FII
Hu, X.-M., He, F.-L., Chen, W.-N., & Zhang, J. (2017). Cooperation coevolution with fast interdependency identification for large scale optimization. Information Sciences, 381, 142–160. doi:10.1016/j.ins.2016.11.013
这篇文章的主要贡献是首次提出了 快速相互依赖识别算法(Fast Interdependency Identification,FII
),在 协同进化框架(Cooperative Coevolution Framework,CC) 中起到对决策变量进行又快又准(文中作者是这个意思)的识别与分组的作用
一、理论基础
假设 F ( x ⃗ ) F\left( \vec{x} \right) F(x) 是给定的问题
-
如果 x i x_i xi 与 x j x_j xj 相互作用,则有公式(1): ∂ F ∂ x i = g ( x ⃗ ) , x j ∈ x ⃗ s u b , x ⃗ s u b ∈ x ⃗ \frac{\partial F}{\partial x_i}=g\left( \vec{x} \right) ,\ x_j\in \vec{x}_{sub},\ \vec{x}_{sub}\in \vec{x} ∂xi∂F=g(x), xj∈xsub, xsub∈x
根据牛莱公式,有公式(2): F ( x ⃗ ) ∣ x i = b − F ( x ⃗ ) ∣ x i = a = ∫ a b ∂ F ∂ x i d x i F\left( \vec{x} \right) |_{x_i=b}-F\left( \vec{x} \right) |_{x_i=a}=\int_a^b{\frac{\partial F}{\partial x_i}dx_i}\ F(x)∣xi=b−F(x)∣xi=a=∫ab∂xi∂Fdxi
基于公式(1)、(2),又有公式(3): F ( x ⃗ ) ∣ x i = b − F ( x ⃗ ) ∣ x i = a = ∫ a b g ( x ⃗ s u b ) d x i , x j ∈ x ⃗ s u b F\left( \vec{x} \right) |_{x_i=b}-F\left( \vec{x} \right) |_{x_i=a}=\int_a^b{g\left( \vec{x}_{sub} \right) dx_i}\ ,x_j\in \vec{x}_{sub} F(x)