Fast Interdependency Identification (FII) - 2017

本文介绍了一种快速相互依赖识别算法(FII),该算法应用于协同进化框架,能快速准确地识别决策变量的相互依赖关系。通过理论基础和两个阶段的算法实现,FII能在线性时间复杂度内识别可分与不可分变量,有效减少计算量。论文还对算法的优缺点进行了分析,表明FII在速度和准确率上具有竞争力,尤其是在多数变量可分离的情况下。
摘要由CSDN通过智能技术生成

FII

Cooperation coevolution with fast interdependency identification for large scale optimization

Hu, X.-M., He, F.-L., Chen, W.-N., & Zhang, J. (2017). Cooperation coevolution with fast interdependency identification for large scale optimization. Information Sciences, 381, 142–160. doi:10.1016/j.ins.2016.11.013

这篇文章的主要贡献是首次提出了 快速相互依赖识别算法(Fast Interdependency Identification,FII,在 协同进化框架(Cooperative Coevolution Framework,CC) 中起到对决策变量进行又快又准(文中作者是这个意思)的识别与分组的作用

一、理论基础

假设 F ( x ⃗ ) F\left( \vec{x} \right) F(x ) 是给定的问题

  1. 如果 x i x_i xi x j x_j xj 相互作用,则有公式(1): ∂ F ∂ x i = g ( x ⃗ ) ,   x j ∈ x ⃗ s u b ,   x ⃗ s u b ∈ x ⃗ \frac{\partial F}{\partial x_i}=g\left( \vec{x} \right) ,\ x_j\in \vec{x}_{sub},\ \vec{x}_{sub}\in \vec{x} xiF=g(x ), xjx sub, x subx
    根据牛莱公式,有公式(2): F ( x ⃗ ) ∣ x i = b − F ( x ⃗ ) ∣ x i = a = ∫ a b ∂ F ∂ x i d x i   F\left( \vec{x} \right) |_{x_i=b}-F\left( \vec{x} \right) |_{x_i=a}=\int_a^b{\frac{\partial F}{\partial x_i}dx_i}\ F(x )xi=bF(x )xi=a=abxiFdxi 
    基于公式(1)、(2),又有公式(3): F ( x ⃗ ) ∣ x i = b − F ( x ⃗ ) ∣ x i = a = ∫ a b g ( x ⃗ s u b ) d x i   , x j ∈ x ⃗ s u b F\left( \vec{x} \right) |_{x_i=b}-F\left( \vec{x} \right) |_{x_i=a}=\int_a^b{g\left( \vec{x}_{sub} \right) dx_i}\ ,x_j\in \vec{x}_{sub} F(x )

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值