1.树和二叉树的定义
树是n(n≥0)个结点的有限集,它或为空树(n=0);或为非空树,对于非空树 T T T。
(1)有且仅有一个称之为根的结点;
(2)除根结点以外的其余结点可分为m(m>0)个互不相交的有限集 T 1 T_1 T1, T 2 T_2 T2,···, T m T_m Tm,其中每一个集合本身又是一棵树,并且称为根的子树。
1.2 树的基本术语
(1)结点:树中的一个独立单元。包含一个数据元素及若干指向其子树的分支。
(2)结点的度:结点拥有的子树数称为结点的度。
(3)树的度:树的度是树内各结点度的最大值。
(4)叶子:度为0的结点称为叶子或终端结点。
(5)非终端结点:度不为0的结点称为非终端结点或分支结点。除根结点之外,非终端结点也称为内部结点。
(6)双亲和孩子:结点的子树的根称为该结点的孩子,相应地,该结点称为孩子的双亲。
(7)兄弟:同一个双亲的孩子之间互称兄弟。
(8)祖先:从根到该结点所经分支上的所有结点。
(9)子孙:以某结点为根的子树中的任一结点都称为该结点的子孙。
(10)层次:结点的层次从根开始定义起,根为第一层,根的孩子为第二层。树中任一结点的层次等于其双亲结点的层次加1。
(11)堂兄弟:双亲在同一层的结点互为堂兄弟。
(12)树的深度:树中结点的最大层次称为树的深度或高度。
(13)有序树和无序树:如果将树中结点的各子树看成从左至右是有次序的(即不能互换),则称该树为有序树,否则称为无序树。在有序树中最左边的子树的根称为第一个孩子,最右边的称为最后一个孩子。
(14)森林:是m(m≥0)棵互不相交的树的集合。对树中每个结点而言,其子树的集合即为森林。由此,也可以用森林和树相互递归的定义来描述树。
1.3 二叉树的定义
二叉树是n(n≥0)个结点所构成的集合,它或为空树(n=0);或为非空树,对于非空树 T T T:
(1)有且仅有一个称之为根的结点;
(2)除根结点以外的其余结点分为两个互不相交的子集 T 1 T_1 T1和 T 2 T_2 T2,分别称为 T T T的左子树和右子树,且 T 1 T_1 T1和 T 2 T_2 T2本身又都是二叉树。
二叉树与树一样具有递归性质,二叉树与树的区别主要有以下两点:
(1)二叉树每个结点至多只有两棵子树(即二叉树中不存在度大于2的结点);
(2)二叉树的子树有左右之分,其次序不能任意颠倒。
2.二叉树的性质和存储结构
2.1 二叉树的性质
(1)在二叉树的第i层上至多有 2 i − 1 2^{i-1} 2i−1个结点(i≥1)。
(2)深度为k的二叉树至多有 2 k − 1 2^k-1 2k−1个结点(k≥1)。
(3)对任何一棵二叉树T,如果其终端结点数为 n 0 n_0 n0,度为2的结点数为 n 2 n_2 n