A Hierarchical Neural Autoencoder for Paragraphs and Documents

这是ACL2015的一片关于自然语言生成的文章,paper链接https://arxiv.org/abs/1506.01057,一作是李纪为大神(据说是stanford CS方向第一个3年毕业的PHD),现在是香侬科技的创始人,作者homepage http://stanford.edu/~jiweil/index.html,code在github上面已经released出来了https://github.com/jiweil/Hierarchical-Neural-Autoencoder
个人瞎扯:久仰李纪为大神,一直都想拜读一下他的文章,因此就选了这篇google citation最高的文章。
文章要做的事情:
输入:一段自然语言      输出:一段自然语言

文章在Wikipedia和Hotel Reviews这两个datasets上面生成的一些例子如下所示。
example
三个方法(接下来会介绍)在两个数据集上面定量分析的实验结果如下所示。
results

method
standard sequence to sequence model
standard
hierarchical sequence to sequence model
hierarchical
hierarchical sequence to sequence model with attention
hierarchical with attention

阅读更多
文章标签: coherent text generation
个人分类: 自然语言处理
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭