【每日题解】638. 大礼包

在 LeetCode 商店中, 有 n 件在售的物品。每件物品都有对应的价格。然而,也有一些大礼包,每个大礼包以优惠的价格捆绑销售一组物品。

给你一个整数数组 price 表示物品价格,其中 price[i] 是第 i 件物品的价格。另有一个整数数组 needs 表示购物清单,其中 needs[i] 是需要购买第 i 件物品的数量。

还有一个数组 special 表示大礼包,special[i] 的长度为 n + 1 ,其中 special[i][j] 表示第 i 个大礼包中内含第 j 件物品的数量,且 special[i][n] (也就是数组中的最后一个整数)为第 i 个大礼包的价格。

返回 确切 满足购物清单所需花费的最低价格,你可以充分利用大礼包的优惠活动。你不能购买超出购物清单指定数量的物品,即使那样会降低整体价格。任意大礼包可无限次购买。

示例 1:

输入:price = [2,5], special = [[3,0,5],[1,2,10]], needs = [3,2]
输出:14
解释:有 A 和 B 两种物品,价格分别为 ¥2 和 ¥5 。 
大礼包 1 ,你可以以 ¥5 的价格购买 3A 和 0B 。 
大礼包 2 ,你可以以 ¥10 的价格购买 1A 和 2B 。 
需要购买 3 个 A 和 2 个 B , 所以付 ¥10 购买 1A 和 2B(大礼包 2),以及 ¥4 购买 2A 。

示例 2:

输入:price = [2,3,4], special = [[1,1,0,4],[2,2,1,9]], needs = [1,2,1]
输出:11
解释:A ,B ,C 的价格分别为 ¥2 ,¥3 ,¥4 。
可以用 ¥4 购买 1A 和 1B ,也可以用 ¥9 购买 2A ,2B 和 1C 。 
需要买 1A ,2B 和 1C ,所以付 ¥4 买 1A 和 1B(大礼包 1),以及 ¥3 购买 1B , ¥4 购买 1C 。 
不可以购买超出待购清单的物品,尽管购买大礼包 2 更加便宜。

思路

动态规划,这里只有 special 数组是需要考虑的特殊变量,可以把 大礼包 也看成是产品,price 数组最后额外加钱就可以了。

  • dp数组,dp[i][n] 表示买 i 个第 n 号商品的最小价格
  • 初始条件和状态转移这里卡住了

问了问 gpt ,提供了一个反向思考的思路:

  • 用一个 dp 数组,其中 dp[i] 表示为了满足需要 needs 的当前状态 i 的最小花费。
  • 对于每一种物品组合状态 i(例如 needs 的当前状态),首先计算直接购买所有物品的价格:
cost = sum(price[j] * needs[j] for j in range(n))
dp[i] = min(dp[i], cost)
  • 然后遍历所有大礼包,检查当前状态能否使用大礼包。如果可以,则更新最小花费:
for sp in special:
    new_needs = needs[:]
    for j in range(n):
        new_needs[j] -= sp[j]
    if all(x >= 0 for x in new_needs):  # 检查新需求是否有效
        dp[i] = min(dp[i], sp[n] + dp[tuple(new_needs)])

结果发现这似乎不是一道 dp 的问题,而是用深搜来解决,深搜使用大礼包来寻找最优解。同样的先计算按照原价购买所有商品的价格,然后再用深搜判断使用大礼包是否能够减少价格。但是其实和 dp 的想法一致,只不过用 memo 字典代表 dp,字典 key 用一个 list 表示,这个 list 为一个需求状态。用 dp 来解释就是 dp[i] 代表了 i 装填的 min_cost,而 i 是一个 list 表示一个 needs 情况。

代码(Python)

class Solution(object):
    def shoppingOffers(self, price, special, needs):
        """
        :type price: List[int]
        :type special: List[List[int]]
        :type needs: List[int]
        :rtype: int
        """
        n = len(price)
        memo = {}  # 手动构建缓存

        def dfs(needs):
            # 将需求状态转化为元组,以便作为字典的键
            needs_tuple = tuple(needs)
        
            # 如果已经计算过该需求组合的最小花费,则直接返回
            if needs_tuple in memo:
                return memo[needs_tuple]

            # 如果直接购买所有物品的价格
            min_cost = sum(needs[i] * price[i] for i in range(n))

            # 尝试使用每个大礼包
            for sp in special:
                new_needs = []
                for i in range(n):
                    if needs[i] < sp[i]:  # 如果大礼包内物品数量超过需求,跳过该大礼包
                        break
                    new_needs.append(needs[i] - sp[i])
                else:  # 如果所有需求都满足,则计算使用该大礼包后的最小花费
                    min_cost = min(min_cost, sp[-1] + dfs(new_needs))

            # 将当前需求组合的最小花费存入缓存
            memo[needs_tuple] = min_cost
            return min_cost

        # 从初始需求开始递归计算最小花费
        return dfs(needs)

sp[-1] 表示大礼包 sp 的最后一个元素,即该大礼包的价格。在 special 数组中,每个大礼包的信息格式是 [商品1的数量, 商品2的数量, ..., 大礼包价格],所以 sp[-1] 取的是大礼包的价格部分。

至于是否考虑了大礼包可以无限次购买的情况,答案是是的。在代码中,通过递归调用 dfs(new_needs) 来反复尝试使用同一个大礼包。如果当前需求 needs 满足使用某个大礼包的条件,那么会更新需求并继续递归地尝试购买,直到需求不足以使用该大礼包为止。所以,这种递归结构自然允许大礼包的多次使用,直到需求被满足或无效为止。

在这个代码片段中:

for sp in special:
    new_needs = []
    for i in range(n):
        if needs[i] < sp[i]:  # 如果大礼包内物品数量超过需求,跳过该大礼包
            break
        new_needs.append(needs[i] - sp[i])
    else:  # 如果所有需求都满足,则计算使用该大礼包后的最小花费
        min_cost = min(min_cost, sp[-1] + dfs(new_needs))

这个 else 是与内层的 for 循环配对的,而不是 if 语句。Python 的 for-else 结构在此处的作用是:

  • 当内层的 for 循环遍历完 range(n) 的所有元素时,才会执行 else 中的代码块。
  • 如果内层 for 循环因为 break 语句提前退出(即发现大礼包的物品数量超过需求),则 else 部分不会执行。

代码(C++)

#include<unordered_map>
#include<vector>

class Solution {
private:
// 定义自定义哈希函数
struct VectorHash {
    size_t operator()(const vector<int>& vec) const {
        size_t hash = 0;
        for (int num : vec) {
            hash ^= hash * 31 + std::hash<int>{}(num);
        }
        return hash;
    }
};

public:
    unordered_map<vector<int>, int, VectorHash> memo;

    int dfs(const vector<int>& price, const vector<vector<int>>& special, vector<int> needs) {
        if (memo.find(needs) != memo.end()) {
            return memo[needs];
        }

        int n = price.size();
        int min_cost = 0;
        for (int i = 0; i < n; ++i) {
            min_cost += price[i] * needs[i];
        }

        for (const auto& sp : special) {
            vector<int> new_needs = needs;
            bool valid = true;

            for (int i = 0; i < n; ++i) {
                if (new_needs[i] < sp[i]) {
                    valid = false;
                    break;
                }
                new_needs[i] -= sp[i];
            }

            if (valid) {
                min_cost = std::min(min_cost, sp.back() + dfs(price, special, new_needs));
            }
        }

        memo[needs] = min_cost;
        return min_cost;
    }

    int shoppingOffers(vector<int>& price, vector<vector<int>>& special, vector<int>& needs) {
        memo.clear();
        int minn_cost = dfs(price, special, needs);
        return minn_cost;
    }
};

C++ 中无法直接在哈希表中用列表作为键,需要自定义哈希函数。

// 定义自定义哈希函数
struct VectorHash {
    size_t operator()(const vector<int>& vec) const {
        size_t hash = 0;
        for (int num : vec) {
            hash ^= hash * 31 + std::hash<int>{}(num);
        }
        return hash;
    }
};
  • VectorHash: 这是一个自定义的哈希函数,专门为 vector<int> 类型设计。它遍历 vector 中的每个元素,并生成一个组合哈希值。
  • unordered_map<vector<int>, int, VectorHash>: 将 VectorHash 作为哈希函数传递给 unordered_map,从而使 vector<int> 可以作为键来存储和查找。

通过这个改动,编译器就可以正确地为 Solution 类生成默认构造函数,因为 unordered_map 可以正常工作,不再依赖于 std::hash<vector<int>>

VectorHash 结构体 - 能够将 vector 转换成 size_t 类型的哈希值键

VectorHash 结构体定义了一个自定义哈希函数,用于 std::vector<int> 类型。这是因为 std::unordered_map 需要可哈希的键,但 std::vector<int> 并没有内置的哈希函数。以下是对该函数的总结:

  1. 目的VectorHash 提供了一种计算 std::vector<int> 哈希值的方法,使其能够用作 std::unordered_map 的键。

  2. operator():该结构体重载了函数调用运算符,使其可以像函数一样使用。它接受一个 const vector<int>& 参数,并返回一个 size_t 类型的哈希值。

  3. 哈希计算

    • 初始化一个 size_t 类型的变量 hash 为零。
    • 遍历向量中的每个整数 num,使用公式 hash ^= hash * 31 + std::hash<int>{}(num) 更新哈希值。
      • std::hash<int>{}(num) 计算 num 的哈希值。
      • hash * 31 用于分散哈希值,减少冲突。
      • 使用 ^=(按位异或赋值)将当前哈希值与新计算的值结合。
  4. 返回值:处理完所有元素后,返回最终的哈希值,表示整个向量的哈希。

使用示例

通过定义 VectorHash,可以将 std::vector<int> 作为 unordered_map 的键。例如:

std::unordered_map<std::vector<int>, int, VectorHash> memo;
std::vector<int> vec = {1, 2, 3};
memo[vec] = 42; // 可以使用 VectorHash

这样,unordered_map 就能够根据向量的内容正确存储和检索值。没有 VectorHash,编译将会失败,因为 unordered_map 不知道如何哈希 std::vector<int>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值