目录
简单
将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。
示例 1:
输入:l1 = [1,2,4], l2 = [1,3,4]
输出:[1,1,2,3,4,4]
示例 2:
输入:l1 = [], l2 = []
输出:[]
示例 3:
输入:l1 = [], l2 = [0]
输出:[0]
提示:
-
两个链表的节点数目范围是
[0, 50]
-
-100 <= Node.val <= 100
-
l1
和l2
均按 非递减顺序 排列
//方法一:递归
//终止条件:当两个链表都为空时,表示我们对链表已合并完成。
//如何递归:我们判断 l1 和 l2 头结点哪个更小,然后较小结点的 next 指针指向其余结点的合并结果。(调用递归)
//时间复杂度:O(n+m),其中 n 和 m 分别为两个链表的长度。因为每次调用递归都会去掉 l1 或者 l2 的头节点(直到至少有一个链表为空),函数 mergeTwoList 至多只会递归调用每个节点一次。因此,时间复杂度取决于合并后的链表长度,即 O(n+m)。
//空间复杂度:O(n+m),其中 n 和 m 分别为两个链表的长度。递归调用 mergeTwoLists 函数时需要消耗栈空间,栈空间的大小取决于递归调用的深度。结束递归调用时 mergeTwoLists 函数最多调用 n+m 次,因此空间复杂度为 O(n+m)。
class Solution {
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
if (l1 == null) {
return l2;
} else if (l2 == null) {
return l1;
} else if (l1.val < l2.val) {
l1.next = mergeTwoLists(l1.next, l2);
return l1;
} else {
l2.next = mergeTwoLists(l1, l2.next);
return l2;
}
}
}
//方法二:迭代
/*
循环条件:当两个链表都不为空时,持续比较当前节点的值。
节点连接:将较小值的节点连接到prev的后面,并移动相应链表的指针。
指针后移:每次连接后,prev指针后移一位。
*/
//时间复杂度:O(n+m),其中 n 和 m 分别为两个链表的长度。因为每次循环迭代中,l1 和 l2 只有一个元素会被放进合并链表中, 因此 while 循环的次数不会超过两个链表的长度之和。所有其他操作的时间复杂度都是常数级别的,因此总的时间复杂度为 O(n+m)。
//空间复杂度:O(1)。我们只需要常数的空间存放若干变量。
class Solution {
public:
ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) {
ListNode* preHead = new ListNode(-1);
ListNode* prev = preHead;
while (l1 != nullptr && l2 != nullptr) {
if (l1->val < l2->val) {
prev->next = l1;
l1 = l1->next;
} else {
prev->next = l2;
l2 = l2->next;
}
prev = prev->next;
}
// 当其中一个链表遍历完后,直接将另一个链表的剩余部分连接到prev的后面。
prev->next = l1 == nullptr ? l2 : l1;
return preHead->next;
}
};
2. 两数相加 中等
给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。
请你将两个数相加,并以相同形式返回一个表示和的链表。
你可以假设除了数字 0 之外,这两个数都不会以 0 开头。
示例 1:
输入:l1 = [2,4,3], l2 = [5,6,4]
输出:[7,0,8]
解释:342 + 465 = 807.
示例 2:
输入:l1 = [0], l2 = [0]
输出:[0]
示例 3:
输入:l1 = [9,9,9,9,9,9,9], l2 = [9,9,9,9]
输出:[8,9,9,9,0,0,0,1]
提示:
-
每个链表中的节点数在范围
[1, 100]
内 -
0 <= Node.val <= 9
-
题目数据保证列表表示的数字不含前导零
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
ListNode *head = nullptr, *tail = nullptr;
//进位值
int carry = 0;
// 遍历两个链表,直到都处理完
while (l1 || l2) {
// 当前l1节点的值,若为空则取0
int n1 = l1 ? l1->val: 0;
// 当前l2节点的值,若为空则取0
int n2 = l2 ? l2->val: 0;
// 计算当前位的和(包含进位)
int sum = n1 + n2 + carry;
// 创建新节点并连接到结果链表
if (!head) {
//处理第一个节点 头尾指向同一个
head = tail = new ListNode(sum % 10);
} else {
//往后处理后续节点 移动尾指针 头指针留着返回结果
tail->next = new ListNode(sum % 10);
tail = tail->next;
}
// 更新进位值(若sum≥10则carry为1,否则为0)
carry = sum / 10;
// 移动指针到下一个节点
if (l1) {
l1 = l1->next;
}
if (l2) {
l2 = l2->next;
}
}
// 处理最后可能的进位
if (carry > 0) {
tail->next = new ListNode(carry);
}
// 返回结果链表的头节点
return head;
}
};