我的2024年中工作总结

e31b2850ffb2ffa76f1dc4acfd867f5a.jpeg

2024年上半年我的工作充满了挑战。在大模型上,多个模型齐头并进,进入鏖战阶段;在数据治理上,切入了数据安全的新赛道,数据一致性治理逐步深入;在业务赋能上,大道至简,找到了一种以与业务共舞的方法;在管理上,认识到了个人的局限,希望能授人以渔;以上所有工作的创新突破,都离不开学习,而AI则是我的月光宝盒。

一、大模型的鏖战

今年是大模型探索的第二年,我们按照不同类型,推进大模型在公司的应用建设和运营。

1、加大存量大模型推广运营

我们通过集团公司能力上台机制重点推广了之前上线的智能核稿和智典大模型,吸引了不少省公司来订购使用。希望这些产品能够实现自负盈亏,这对它们的持续发展很重要。

2、持续开发新的大模型应用

今年我们研发并投产了两个新的大模型应用:财务大模型和公文摘要大模型。财务大模型在财务部门的支持下,准确率提升到95%,累计回答近万个问题。公文摘要大模型已经嵌入到了日常的公文处理流程中,每个月点击超万次,当前使用规模还在持续增长。

3、推进ChatBI持续迭代优化

ChatBI前期由于业务场景选择不合适,加上领域语料不足及基础大模型本身能力问题,迟迟无法投入生产。为了突破这些困难,我们找了驱动力比较大的地市继续探索,专注于网格考核指标场景,现在终于把准确率提到了90%左右。

同时,我们持续提升产品体验,一是用户提问自动完善补全,这样可以帮助大模型更清晰的理解一线问题,二是新增一线人员自助配置知识库功能,用以解决新增指标缺少专业语料的问题,这是持续运营的抓手。ChatBI算是迎来了成功的曙光。

4、探索GraphRAG的价值应用

通信录大模型是我们正在攻坚的另一个大模型,因为它在日常工作中很实用。比如,当你记不清某个同事的全名,只记得姓氏和所在部门,或者想知道某个同事的直接上级是谁,这个模型就能帮上忙。

但是,通信录大模型对查询的准确度要求很高。传统的RAG(检索增强生成)技术不够用,所以我们正在探索基于图的知识图谱技术(比如微软开源的GraphRAG)。

通信录大模型对我们意义很大,因为它是用知识图谱解决大模型"幻觉"问题的重要试验田。

通过这些实践 我对大模型的技术和应用有了更深的理解。并在几篇文章中分享了自己的一些思考,比如《傅一平:大模型在数据领域的十大价值应用》、《实战1年半,我总结的大模型在企业落地的三个策略》和《从业务到数据,大模型应用成功的再思考!》。

二、数据治理新征程

今年是我们开展企业级数据治理工作的第三个年头,在继续加强数据开放和运营的基础上,重点做了三件大事:

1、建立数据管理责任矩阵

我们发现,原有的企业数据治理体系中,各部门的责任还不够明确,为此制定了一个详细的责任矩阵。这个矩阵涵盖了数据管理的八个关键方面:数据管理制度、信息架构管理、数据汇聚管理、数据建模管理、数据开放管理、数据质量管理、主数据管理及数据安全管理。

对于每个方面,责任矩阵明确了各部门的具体职责,包括监督、统筹、管理和执行四个层面。同时,还制定了相应的考核规则,确保责任落实到位。

2、数据安全融入数据治理

按照公司的要求,我们首次把数据安全管理纳入企业数据治理体系。为此,我们梳理出了数据安全制度管理、数据安全基础管理、数据生命周期安全管理和数据安全技术管理等4大类22子类数据安全管理活动,并基于"谁负责业务,谁负责业务数据,谁负责业务数据安全"的原则,明确了各部门在数据安全管理活动中的具体职责。

为了更好的履行企业级数据安全日常运营的统筹职责,我们深入学习了国家数据安全法律法规、行业和公司内部的数据安全相关制度和办法,重点剖析了DSMM数据安全成熟度框架。通过对标,发现了数据安全管理中的一些薄弱环节,并实施了一系列改进措施,比如:

  • 利用大模型技术对数据进行分类分级

  • 隔离开发环境和生产环境的数据

  • 探索对数据集市进行加密

  • 建立新的数据管理账号权限体系

  • 进一步加强敏感数据操作的监测和审计

当前部分措施已经取得了不错的效果。例如:

  • 所有涉敏操作都通过了金库审批

  • 所有数据操作都在云桌面上进行

  • 敏感数据在前台和后台都经过全面脱敏处理

  • 办公环境与互联网完全隔离

当然在加强数据安全的同时,我们仍然要信守数据端到端开放缩减到2小时的承诺,这是一个全新的挑战,需要在运营中兼顾安全和效率。

3、深化数据一致性的治理

依托于企业级数据治理体系,通过一年多的企业数据一致性治理实践,我们已经形成了企业数据一致性治理的一套方法论,包括组织保障,数据共享,根因分析,周报机制等等,这套方法让我们工作效率大大提高。

比如,第一个专题我们花了半年时间,现在类似的专题只需1个月就能搞定。这种经验积累为今后的工作打下了坚实基础。

目前我们已经开展了包括互联网专线在内的8个专题的企业数据一致性治理,其中4个专题已经完成(跨域数据的一致性达到99.9%以上),当前处于常态化运营阶段。同时也启动了企业数据一致性平台的建设,用以实现跨域数据稽核和修复的自动化。

关于企业数据治理的价值显性化问题,我们也看到了曙光。举个例子,我们之前做的一个企业数据一致性专题,恰好成为了公司审计的重点。幸运的是,在审计开始前,我们已经完成了问题的根因分析,各部门责任已经明确,相关修复工基本完成,长效机制也正在建立。这样的未雨绸缪,一定程度上降低了公司的经营风险和管理成本。

三、与业务共舞

我一直希望做的是数据驱动业务的价值工作,而不是简单重复的数据支撑工作。今年上半年,机缘巧合,通过两个月时间与业务部门的合作,建立了一套应对竞争的数据模型。

这个模型的效果非常显著:每月帮助减少了约XX%的用户流失,这是我们一直追求的"数据驱动业务"的一个典型案例。

我总结了这次模型较为成功的原因,主要体现在四个方面:

1、目标清晰

以往我们的数据模型要达成的业务目标往往是模糊的,难以衡量成效。但这次不同:首先问题清晰,公司经营分析报告显示某个区域指标下滑,并且逐步扩散;其次原因明确,通过分析,基本找到了问题所在;最后任务具体,公司领导要求基于数据模型进行精准的应对和维系。

2、组织保障

过去,数据模型常被视为一个普通的工作需求,组织和资源保障也是比较松散。这次,公司对于这套数据模型的构建予以高度的重视,体现在三个方面:

一是我就被要求直接参加管理层主持的研讨会议,并且与业务部门领导进行充分沟通;

二是每周业务部门会召集数据团队开例行推进会,我也花很多时间与相关同事研讨模型方案;

三是管理层会定期听取进展汇报。

3、能力具备

这套模型对数据的实时性、模型准确性和响应及时性提出很高要求,需要调动大量的人力资源、平台资源和技术资源,我们多年以来建立起来的实时数据中台体系在这个时候发挥出了巨大的价值。

4、深度协同

这次与业务部门的合作达到了新高度,体现在三个方面:

一是扁平化工作模式,业务部门申请了几个月的特殊通道,取消了较长的需求流程,这样沟通和迭代飞快;

二是双方分工明确,业务团队负责制定目标、提供思路和样本数据,并及时调动渠道、政策等各种资源;数据团队每三天更新一个模型版本,持续提升准确率和召回率;

三是模型的训练、验证、发布和系统上线全部一体化进行,各环节衔接的非常紧密。

这是我所经历过的业务和数据团队配合最默契、合作最紧密的一次。

这让我意识到:只要时机成熟,组织给力、流程精简、能力过硬,我们就真的能用数据来驱动业务。过去的一些失败,大致是这四个条件中至少有一个没满足吧。

类比企业数据治理工作,我发现两个事情的底层成功逻辑都差不多,后续希望能基于更多的案例形成一套方法论,这样对公司的价值就更大了。

四、管理的实践

我很早就成为了一个团队的管理者,但骨子里还是个"独行侠",更多时候是让团队按我的想法执行。但随着工作内容增多和复杂化,我意识到自己需要做出一些改变,以充分发挥团队的力量。以下是我今年的一些新尝试:

1、花更多精力在招聘上

今年,我把更多精力放在了招聘上(公司有内部人才流动机制)。我会仔细去了解应聘者的背景,提前跟应聘者进行深入交流,有时一聊就是几小时,通过这种方式,我找到了理想的“外交”人选,这是当前数据治理团队迫切需要的。

选择比培养重要,而在以前,我缺乏这方面的意识,更愿意把时间花在业务上。

2、压实组长的管理职责

今年我对主管,组长的管理职责做了进一步明确,主要体现在:

一是要求其为团队的OKR结果负责,而不是简单汇总成员工作。

二是减少他们的具体业务工作,让他们有更多精力思考管理问题。

三是鼓励他们关注团队目标设定、过程把控、结果达成。

四是希望他们有意识的加强与外部门的协同,通过周会、研讨等群体决策方式推进相关工作,同时能更好的展示团队的成果。

现在公司有个炼金计划,即培养年轻干部队伍,我觉得除了关注专业能力,更要赋予年轻人实践管理的机会。

3、分享自己的职场经验

今年开始,每次周会,除了讨论具体工作,我都会和大家分享一些身边的职场小故事,并给出我的看法,这也算是授人以渔吧,比如:

  • 只提问题不给建议,说明能力不够,或者不敢承担责任

  • 在汇报时一味指责合作伙伴,这叫推卸责任和摆错位置

  • 临近汇报才说准备不足,反映出时间管理能力不足

  • 盲目分派下属工作,这叫甩锅,体现的是责任心不足

  • 遇到新问题不先自己研究,就等着领导给思路,这叫缺乏主动性和独立性

  • 总结报告说不到点上,说明对工作理解不深,或者分析能力欠缺

  • 重要的事情要要说三遍,并且时刻要进行纠偏

  • ......

德鲁克说:管理的本质是激发善意和潜能,在这方面,我还有很多的东西需要学习和实践。

五、以AI为工作助手

去年,我曾说ChatGPT改变了我的学习方式,称它为"每个普通人的月光宝盒"。我今年又写了一篇文章《没有读不懂的书,ChatGPT让我的理解力提升了1000%!》,进一步分享了AI使用心得。

如今,随着ChatGPT升级到4o版本,Claude 3.5的横空出世,这些AI工具不仅是学习的利器,更是工作的得力助手。

1、打开专业的英文世界

我利用ChatGPT地道的翻译了DAMA、TOGAF、DGI等众多专业英文文献,这进一步提升我对数据管理,架构框架的理解。同时也为我打开了整个英文专业读物的世界。现在,我唯一的"问题"就是没有足够的时间。

2、提升工作的决策效率

凡是工作中碰到的任何新概念,我都会先问问ChatGPT,这大大缓解了我的"不懂焦虑症"。特别是在听取他人汇报或接受培训时,ChatGPT特别有用,因为我能快速理解别人提到的那些新名词,并提出恰当的问题,从而大幅提升决策和学习效率。

3、快速进入一个新领域

今年我们的数据治理切入了数据安全的新赛道,在ChatGPT的助力下,我用1个礼拜的时间,就对数据安全的整个框架有了理解,这让我们能够快速梳理出公司数据安全的22项管理活动,制定出公司数据安全的责任矩阵,并且提出了管理和技术层面的改进措施,即使是在实操层面,比如制定数据安全检查的细则方面,ChatGPT也给了我们很多启示。

我还专门写了近10篇数据安全的文章,其中《数据治理:数据安全100个基本概念全解》、《数据治理:一文讲透数据安全》已经发表,如果没有AI的帮助,这几乎是不可能完成的任务。

4、用业务语言诠释工作

我曾写过一篇文章《IT管理者的自白:技术让我坐上了会议桌,但业务语言让我在桌前有发言权》,强调了业务语言对职场的重要性。而ChatGPT恰好在这方面帮了大忙:它能提供生动具体的类比和案例,帮我用通俗易懂的方式解释复杂概念。

举个例子,当初要向公司领导汇报数据治理,感觉解释不清楚数据治理和数据管理的区别,我就让ChatGPT帮忙,然后它给出了一个绝妙的比喻:"数据治理就像一个乐队的指挥,让大家演奏能步调一致,而演奏者干的是数据管理的事情,就是演奏出美妙的音乐。" 有了这样的类比,我们跟领导的交流也就更顺畅了。

当前,Claude 3.5 Sonnet在很多方面已经超越了ChatGPT 4o,工作中有太多的东西值得向它们学习。

与大家共勉!

6211b3ff4469bae0ea25f7c14b63ed48.png

12282e4720a934ef1880dcc2b09758c0.png

1c119db2e274a76162cd3cc31c32e333.png

85f66d8504593ddb0a63ed8a8d3e1cee.png

IT管理者的自白:技术让我坐上了会议桌,但业务语言让我在桌前有发言权 5412

每个人都该提前想想失业了怎么办? 4195

八个领悟:我在数据管理中的挑战与反思! 2288

麦肯锡逻辑思考力 2352

如何写好年终总结?V4.0 1903

2024年,我的数据工作计划 4675

查看全部文章

点击左下角“阅读原文”查看更多精彩文章,公众号推送规则变了,如果您想及时收到推送,麻烦右下角点个在看或者把本号置顶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傅一平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值