先运行一段代码
tensorflow 定义一个计算图:张量代表节点,计算过程(节点与节点之间的关系)代表边(flow)
import tensorflow as tf
g1=tf.Graph()
with g1.as_default():
v=tf.get_variable("v",shape=[1],initializer=tf.zeros_initializer)
g2=tf.Graph()
with g2.as_default():
v=tf.get_variable("v",shape=[1],initializer=tf.ones_initializer)
#在计算图g1中读取变量"v"的取值
with tf.Session(graph=g1) as sess:
tf.global_variables_initializer().run()
with tf.variable_scope("",reuse=True):
print(sess.run(tf.get_variable("v")))
with tf.Session(graph=g2) as sess:
tf.global_variables_initializer().run()
with tf.variable_scope("",reuse=True):
print(sess.run(tf.get_variable("v")))
保存为 graphone.py 终端输入:
$ python graphone.py
运行结果
[ 0.]
[ 1.]
这里定义了两个计算图:g1=tf.Graph() 和 g2=tf.Graph().
计算图t1中定义了一个变量 v ,初始化为0;计算图t2中定义了一个变量 v ,初始化为2.
基本元素
- 张量
- 会话:讲计算放到with内部