tensorflow入门笔记

本文深入探讨了TensorFlow中计算图的概念,通过实例演示了如何使用计算图g1和g2定义变量并初始化,展示了变量在不同计算图中的独立性和初始化差异。关键代码片段和运行结果帮助理解TensorFlow的基本元素——张量和会话。
摘要由CSDN通过智能技术生成

先运行一段代码

tensorflow 定义一个计算图:张量代表节点,计算过程(节点与节点之间的关系)代表边(flow)

 import tensorflow as tf

g1=tf.Graph()
with g1.as_default():
    v=tf.get_variable("v",shape=[1],initializer=tf.zeros_initializer)

g2=tf.Graph()
with g2.as_default():
    v=tf.get_variable("v",shape=[1],initializer=tf.ones_initializer)

#在计算图g1中读取变量"v"的取值
with tf.Session(graph=g1) as sess:
    tf.global_variables_initializer().run()
    with tf.variable_scope("",reuse=True):
        print(sess.run(tf.get_variable("v")))

with tf.Session(graph=g2) as sess:
    tf.global_variables_initializer().run()
    with tf.variable_scope("",reuse=True):
        print(sess.run(tf.get_variable("v")))

保存为 graphone.py 终端输入:

$ python graphone.py

运行结果

[ 0.]
[ 1.]

这里定义了两个计算图:g1=tf.Graph() 和 g2=tf.Graph().
计算图t1中定义了一个变量 v ,初始化为0;计算图t2中定义了一个变量 v ,初始化为2.

基本元素

  1. 张量
  2. 会话:讲计算放到with内部
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值