数论之欧几里德算法(一)

简介:
欧几里德算法,又称辗转相除法,是求解最大公约数的算法。

定理:
欧几里德算法的理论支撑为GCD递归定理,下面介绍这个定理。
GCD递归定理:
对任意非负整数a和任意正整数b,gcd(a , b) = gcd(b , a%b)

代码:
由上述定理,我们可以直接得出gcd函数的代码:

int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);
}

扩展:
根据a,b的最大公约数,我们可以求得a,b的最小公倍数。
lcm函数:

int lcm(int a,int b){
    return a/gcd(a,b)*b;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值