三.分组背包
for(分组i){
for(int j = V; j > 0; j--){
for(分组i中的k){
f[j] = f[j - w[k]] + v[k];
}
}
}
四.多重背包
题目
有NNN种物品和一个容量为VVV的背包。第iii种物品最多有p[i]p[i]p[i]件可用,每件费用是w[i]w[i]w[i],价值是v[i]v[i]v[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本算法
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第iii种物品有表示前i种物品恰放入一个容量为jjj的背包的最大权值,则有状态转移方程:
f[i][j]=max(f[i−1][j−k∗w[i]]+k∗v[i])∣0<=k<=p[i]
优化
将第i件物品分堆,每堆分成20,21…2k-1,p[i] - 2k +1件物品。这样就可以将原本p[i]件物品转化成log2(p[i])件物品时间复杂度为O(VlogΣlog(p[i])),减少了复杂度。
其中(1 + 2 +…2k-1) = 2k - 1,就是让分成物品的件数和等于p[i]
模板代码
for(int i = 0; i < n; i++){
int num = min(p[i], V/w[i]); //取最小值,可以减少比较次数
for(int k = 1; num > 0; k<<1){
if(k > num) k = num;
num -= k;
for(int j = V; j >= w[i] * k; j--){
f[j] = max(f[j], f[j - w[i]] + v[i];
}
}
}