背包问题总结

三.分组背包
for(分组i){
	for(int j = V; j > 0; j--){
		for(分组i中的k){
			f[j] = f[j - w[k]] + v[k];
		}
	}
}

四.多重背包

题目

有NNN种物品和一个容量为VVV的背包。第iii种物品最多有p[i]p[i]p[i]件可用,每件费用是w[i]w[i]w[i],价值是v[i]v[i]v[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本算法

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第iii种物品有表示前i种物品恰放入一个容量为jjj的背包的最大权值,则有状态转移方程:

f[i][j]=max(f[i−1][j−k∗w[i]]+k∗v[i])∣0<=k<=p[i]
优化

将第i件物品分堆,每堆分成20,21…2k-1,p[i] - 2k +1件物品。这样就可以将原本p[i]件物品转化成log2(p[i])件物品时间复杂度为O(VlogΣlog(p[i])),减少了复杂度。
其中(1 + 2 +…2k-1) = 2k - 1,就是让分成物品的件数和等于p[i]

模板代码
for(int i = 0; i < n; i++){
	int num = min(p[i], V/w[i]);		//取最小值,可以减少比较次数 
	for(int k = 1; num > 0; k<<1{
		if(k > num) k = num;
		num -= k;
		for(int j = V; j >= w[i] * k; j--){
			f[j] = max(f[j], f[j - w[i]] + v[i]; 
		}
	}
}
		
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值