算法基础课—动态规划(一)背包问题

背包问题概述

在这里插入图片描述
多重背包问题——每个物品有有限个,si
分组背包问题——每一组只能选一个

01背包问题

题目

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

动态规划的关键

在这里插入图片描述
1、状态表示f(i,j)——需要几枚(有可能是i,或者i、j,或者i、j、t)来表示这个状态,如这里的条件是体积和包含前i个物品,于是我们可以把这两个作为状态中的i,j。而f(i,j)的值表达的则是他的属性,即这里的最大价值
集合——f(i,j)表示的是什么状态,i和j是什么,需要几个参数
属性——存的数集合的属性——如最大价值,最小代价等等

2、状态计算——如何进行状态转移
集合划分,如何把当前f(i,j)这个集合划分成更小的集合表示

第一种不含第i件物品,所以此时f(i,j) = f(i - 1, j)

第二种包含第i件物品,所以此时f(i,j)= f(i - 1,j - vi)+ wi 由于当前选法都包含第i件物品,所以我们可以去掉第i件物品,此时的他们的最大最小的排序也不会发生变化,所以找的就是在在不超过第i-1件物品内,体积不超过j-vi的最大值

最后的f(i,j)其实是他们两种情况取一个max
在这里插入图片描述

朴素做法

#include <iostream>
using namespace std;
const int N = 1010;
int n,m;
int f[N][N], v[N], w[N];
int main(){
    int i, j;
    cin>>n>>m;
    for(i = 1; i <= n; i ++){
        cin>>v[i]>>w[i];
    }
    for(i = 1; i <= n; i ++){
        for(j = 0; j <= m; j ++){
            f[i][j] = f[i - 1][j];
            if(j >= v[i])
            f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
        }
    }
    cout<<f[n][m]<<endl;
}

优化方法——滚动数组

关键:化成一维数组
优化可以发现在计算f(i,j)时,只用到了f(i-1,j)和f(i-1,j -vi)时的状态,而那时的j都是比较小的,所以可以把f化成一维数组来算

滚动数组,由于之后的每一次都只与上一次的有关系,且上一次的记录不需要保存,于是我们可以直接使用一维数组,每次使用然后覆盖即可

这里j用倒序是因为,如果说j是从v[i]开始的,则后续使用j-vi时,会变成使用的是第i次的,而需要的是第i-1次的,于是我们可以将j倒序进行循环

//优化做法
#include <iostream>
using namespace std;
const int N = 1010;
int n,m;
int f[N], v[N], w[N];
int main(){
    int i, j;
    cin>>n>>m;
    for(i = 1; i <= n; i ++){
        cin>>v[i]>>w[i];
    }
    for(i = 1; i <= n; i ++){
        for(j = m; j >= v[i]; j --){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout<<f[m]<<endl;
}

完全背包问题

题目

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

动态规划关键

状态转移方程:
在包含i的情况下,可能包含多个i,所以要考虑扣去1.。。k个i的情况,然后比较这几种情况和不包含情况中哪个最大
在这里插入图片描述

朴素做法

朴素做法由于是三层循环,所以会超时

//朴素做法
#include <iostream>
using namespace std;

const int N = 1010;
int n,m;
int f[N][N], v[N], w[N];
int main(){
    int i, j, k;
    cin>>n>>m;
    for(i = 1; i <= n; i ++){
        cin>>v[i]>>w[i];
    }
    for(i = 1; i <= n; i ++){
        for(j = 0; j <= m; j ++){
            for(k = 0; k * v[i] <= j; k ++)
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + w[i] * k);
        }
    }
    cout<<f[n][m]<<endl;
}

优化做法

优化的关键,就是发现f(i,j) 和 i,j有关f的关系,取出k的关系。
通过列举f(i,j) 和f(i, j-v) 发现规律,于是将f(i, j) 的值表示成和i,j有关的情况,于是会少去一层k循环。
在这里插入图片描述

//优化做法
#include <iostream>
using namespace std;
const int N = 1010;
int n,m;
int f[N], v[N], w[N];
int main(){
    int i, j;
    cin>>n>>m;
    for(i = 1; i <= n; i ++){
        cin>>v[i]>>w[i];
    }
    for(i = 1; i <= n; i ++){
        for(j = m; j >= v[i]; j --){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout<<f[m]<<endl;
}

再进一步的优化

上面是01背包,下面是完全背包,因此可以借鉴01背包的优化方法,区别在于一个是i-1 要从大到小,一个是i,要从小到大

在这里插入图片描述
于是也可以将其化为一维数组
注意是从小到大

//进一步的优化
#include <iostream>
using namespace std;

const int N = 1010;
int n,m;
int f[N], v[N], w[N];
int main(){
    int i, j, k;
    cin>>n>>m;
    for(i = 1; i <= n; i ++){
        cin>>v[i]>>w[i];
    }
    for(i = 1; i <= n; i ++){
        for(j = v[i]; j <= m; j ++){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout<<f[m]<<endl;
}

多重背包问题

与完全背包的差异在于指定了个数,于是k这里是min(s[i],j/v[i])
状态转移方程
在这里插入图片描述

题目

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N≤1000
0<V≤2000
0<vi,wi,si≤2000
提示:
本题考查多重背包的二进制优化方法。

输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10

朴素做法

只适用于n较小的时候,因为是三层循环,如果n较大,很容易超时

//朴素做法
#include <iostream>
using namespace std;
const int N = 110;
int n,m;
int f[N][N], v[N], w[N], s[N];
int main(){
    int i, j, k;
    cin>>n>>m;
    for(i = 1; i <= n; i ++){
        cin>>v[i]>>w[i]>>s[i];
    }
    for(i = 1; i <= n; i ++){
        for(j = 0; j <= m; j ++){
            for(k = 0; k <= s[i] && k * v[i] <= j; k ++)
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
        }
    }
    cout<<f[n][m]<<endl;
}

关于不能采用完全背包的优化方法对多重背包进行优化的问题

优化——从状态转移方程入手去思考
如果从完全背包的角度去考虑
在这里插入图片描述

可以发现多出来一项,所以不能f[i,j]与f[i,j-v]之间的max不再存在包含的关系,所以不能直接使用完全背包的那种优化方法

优化做法——多重背包的二进制优化

将k化成二进制,每个二进制的代表数代表一个新的物体,用于对应倍数的体积和价钱
将k个,化成多个新物体
同时包含不同堆的情况,可以很好的表示所有可能

例子,不能选128,是因为这样可以表示超出200的数,所以选择200 - 127 = 73 ,这样可以表示。
在这里插入图片描述

//朴素做法
#include <iostream>
using namespace std;
const int N = 25000;
int n,m;
int f[N][N], v[N], w[N];
int main(){
    int i, j, k, cnt = 0;
    cin>>n>>m;
    int vv, ww, s;
    for(i = 1; i <= n; i ++){
        cin>>vv>>ww>>s;
        k = 1;
        while(k <= s){
            v[++ cnt] = k * vv;
            w[cnt] = k * ww;
            s -= k;
            k *= 2;
        }
        if(s > 0){
            v[++ cnt] = s * vv;
            w[cnt] = s * ww;
        }
    }
    n = cnt;
    for(i = 1; i <= n; i ++){
        for(j = 0; j <= m; j ++){
            f[i][j] = f[i - 1][j];
            if(j >= v[i])
                f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    }
    cout<<f[n][m]<<endl;
}

再根据01背包进一步优化

//进一步优化
#include <iostream>
using namespace std;
const int N = 25000;
int n,m;
int f[N], v[N], w[N];
int main(){
    int i, j, k, cnt = 0;
    cin>>n>>m;
    int vv, ww, s;
    for(i = 1; i <= n; i ++){
        cin>>vv>>ww>>s;
        k = 1;
        while(k <= s){
            v[++ cnt] = k * vv;
            w[cnt] = k * ww;
            s -= k;
            k *= 2;
        }
        if(s > 0){
            v[++ cnt] = s * vv;
            w[cnt] = s * ww;
        }
    }
    n = cnt;
    for(i = 1; i <= n; i ++){
        for(j = m; j >= v[i]; j --){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout<<f[m]<<endl;
}

分组背包问题

其实有点像01背包,只不过区别在于一组内有多个物品可以选择,所以要依次比较

题目

有 N 组物品和一个容量是 V 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N 组数据:

每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8

动态规划

在这里插入图片描述

优化做法

//优化做法
#include <iostream>
using namespace std;
const int N = 1010;
int n,m;
int f[N], v[N][N], w[N][N], k[N];
int main(){
    int i, j, t;
    cin>>n>>m;
    for(i = 1; i <= n; i ++){
        cin>>k[i];
        for(j = 0;j < k[i]; j ++){
            cin>>v[i][j]>>w[i][j];
        }
    }
    for(i = 1; i <= n; i ++){
        for(j = m; j >= 0; j --){
            for(t = 0; t < k[i]; t ++ ){
                if(j >= v[i][t])
                f[j] = max(f[j], f[j - v[i][t]] + w[i][t]);
            }
        }
    }
    cout<<f[m]<<endl;
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值