蓝桥杯算法训练题解有兴趣的可以支持下。
题目
问题描述
在那个过河卒逃过了马的控制以超级超级多的走法走到了终点之后,这匹马表示它不开心了……
于是,终于有一天,它也过河了!
由于过河马积累了许多的怨念,所以这次它过了河之后,再也没有什么东西可以限制它,它可以自由自在的在棋盘上驰骋。一开始,它是在一个n行m列棋盘的左下角(1,1)的位置,它想要走到终点右上角(n,m)的位置。而众所周知,马是要走日子格的。可是这匹马在积累了这么多怨念之后,它再也不想走回头路——也就是说,它只会朝向上的方向跳,不会朝向下的方向跳。
那么,这匹马它也想知道,它想从起点跳到终点,一共有多少种走法呢?
题解
经典的摘樱桃问题,最简单的计数dp。
代码
- 记忆化搜索的java代码
import java.util.Arrays;
import java.util.Scanner;
/**
* @author: Zekun Fu
* @date: 2022/10/18 14:30
* @Description: 过河马
*/
public class Main {
private static int n, m;
private static long[][] f;
private static int[][]dirs = {{1, 2}, {2, 1}, {1, -2}, {2, -1}};
private static long mod = (int)1e9 + 7;
private static boolean check(int a, int b) {
if (a < 0 || a >= n || b < 0 || b >= m)
return false;
return true;
}
private static long dfs(int a, int b) {
if (a == n - 1 && b == m - 1) return 1;
if (a > n || b > m) return 0;
long ans = f[a][b];
if (ans != -1) return ans;
ans = 0;
for (int i = 0; i < 4; i++) {
int na = a + dirs[i][0];
int nb = b + dirs[i][1];
if (check(na, nb))
ans = (dfs(na, nb) + ans) % mod;
}
f[a][b] = ans;
return ans;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
f = new long[n][m];
for (int i = 0; i < n; i++)
Arrays.fill(f[i], -1);
System.out.println(dfs(0, 0));
}
}
- c++递推代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 106, mod = 1e9 +7;
int dp[maxn][maxn];
int n, m;
int dirs[4][2] = {{1, 2}, {1, -2}, {2, 1}, {2, -1}};
int main() {
scanf("%d%d", &n, &m);
dp[1][1] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
for (int k = 0; k < 4; k++) {
int ni = i + dirs[k][0];
int nj = j + dirs[k][1];
if (ni >= 0 && ni <= n && nj >= 0 && nj <= m) {
dp[ni][nj] = ((LL)dp[ni][nj] + dp[i][j]) % mod;
}
}
}
}
printf("%d\n", dp[n][m]);
}