资源限制
内存限制:256.0MB C/C++时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s
问题描述
在那个过河卒逃过了马的控制以超级超级多的走法走到了终点之后,这匹马表示它不开心了……
于是,终于有一天,它也过河了!
由于过河马积累了许多的怨念,所以这次它过了河之后,再也没有什么东西可以限制它,它可以自由自在的在棋盘上驰骋。一开始,它是在一个n行m列棋盘的左下角(1,1)的位置,它想要走到终点右上角(n,m)的位置。而众所周知,马是要走日子格的。可是这匹马在积累了这么多怨念之后,它再也不想走回头路——也就是说,它只会朝向上的方向跳,不会朝向下的方向跳。
那么,这匹马它也想知道,它想从起点跳到终点,一共有多少种走法呢?输入格式
第一行两个数n,m,表示一个n行m列的棋盘,马最初是在左下角(1,1)的位置,终点在右上角(n,m)的位置。
输出格式
输出有一行,一个数表示走法数。由于答案可能很大,所以输出答案除以1000000007所得的余数即可。
样例输入
4 4
样例输出
2
数据规模和约定
n<=100,m<=100
这是一道典型的动态规划问题,根据题目信息马只会向上跑,加上马走日的特性,可知马每次有4种走法,同理每个格子(步)的上一格(步)有四种可能,也就是说到达当前格子的走法数等于4种上一格(步)的
动态规划解决马的无回头路棋盘走法计数,

最低0.47元/天 解锁文章
748

被折叠的 条评论
为什么被折叠?



