给视频每一分钟打上一个label,表示困倦或者不困倦。
封装检测困倦的代码
"""
@author:fuzekun
@file:check_sleepy.py
@time:2023/03/03
@description:
封装检测是否困倦的算法
"""
import os.path
from moviepy.video.io.VideoFileClip import VideoFileClip
from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np # 数据处理的库 numpy
import argparse
import imutils
import time
import dlib
import cv2
import math
# 视频路径
from camera.divide_vedio import getVideo
model_path = 'model/shape_predictor_68_face_landmarks.dat'
# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cpp
object_pts = np.float32([[6.825897, 6.760612, 4.402142], # 33左眉左上角
[1.330353, 7.122144, 6.903745], # 29左眉右角
[-1.330353, 7.122144, 6.903745], # 34右眉左角
[-6.825897, 6.760612, 4.402142], # 38右眉右上角
[5.311432, 5.485328, 3.987654], # 13左眼左上角
[1.789930, 5.393625, 4.413414], # 17左眼右上角
[-1.789930, 5.393625, 4.413414], # 25右眼左上角
[-5.311432, 5.485328, 3.987654], # 21右眼右上角
[2.005628, 1.409845, 6.165652], # 55鼻子左上角
[-2.005628, 1.409845, 6.165652], # 49鼻子右上角
[2.774015, -2.080775, 5.048531], # 43嘴左上角
[-2.774015, -2.080775, 5.048531], # 39嘴右上角
[0.000000, -3.116408, 6.097667], # 45嘴中央下角
[0.000000, -7.415691, 4.070434]]) # 6下巴角
# 相机坐标系(XYZ):添加相机内参
K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,
0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,
0.0, 0.0, 1.0] # 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]
# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]
D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]
# 像素坐标系(xy):填写凸轮的本征和畸变系数
cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)
dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)
# 重新投影3D点的世界坐标轴以验证结果姿势
reprojectsrc = np.float32([[10.0, 10.0, 10.0],
[10.0, 10.0, -10.0],
[10.0, -10.0, -10.0],
[10.0, -10.0, 10.0],
[-10.0, 10.0, 10.0],
[-10.0, 10.0, -10.0],
[-10.0, -10.0, -10.0],
[-10.0, -10.0, 10.0]])
# 绘制正方体12轴
line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],
[4, 5], [5, 6], [6, 7], [7, 4],
[0, 4], [1, 5], [2, 6], [3, 7]]
def get_head_pose(shape): # 头部姿态估计
# (像素坐标集合)填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/
# 17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/
# 45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角
image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],
shape[39], shape[42], shape[45], shape[31], shape[35],
shape[48], shape[54], shape[57], shape[8]])
# solvePnP计算姿势——求解旋转和平移矩阵:
# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。
_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)
# projectPoints重新投影误差:原2d点和重投影2d点的距离(输入3d点、相机内参、相机畸变、r、t,输出重投影2d点)
reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix, dist_coeffs)
reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2))) # 以8行2列显示
# 计算欧拉角calc euler angle
# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrix
rotation_mat, _ = cv2.Rodrigues(rotation_vec) # 罗德里格斯公式(将旋转矩阵转换为旋转向量)
pose_mat = cv2.hconcat((rotation_mat, translation_vec)) # 水平拼接,vconcat垂直拼接
# decomposeProjectionMatrix将投影矩阵分解为旋转矩阵和相机矩阵
_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)
pitch, yaw, roll = [math.radians(_) for _ in euler_angle]
pitch = math.degrees(math.asin(math.sin(pitch)))
roll = -math.degrees(math.asin(math.sin(roll)))
yaw = math.degrees(math.asin(math.sin(yaw)))
# print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))
return reprojectdst, euler_angle # 投影误差,欧拉角
def eye_aspect_ratio(eye):
# 垂直眼标志(X,Y)坐标
A = dist.euclidean(eye[1], eye[5]) # 计算两个集合之间的欧式距离
B = dist.euclidean(eye[2], eye[4])
# 计算水平之间的欧几里得距离
# 水平眼标志(X,Y)坐标
C = dist.euclidean(eye[0], eye[3])
# 眼睛长宽比的计算
ear = (A + B) / (2.0 * C)
# 返回眼睛的长宽比
return ear
def mouth_aspect_ratio(mouth): # 嘴部
A = np.linalg.norm(mouth[2] - mouth[9]) # 51, 59
B = np.linalg.norm(mouth[4] - mouth[7]) # 53, 57
C = np.linalg.norm(mouth[0] - mouth[6]) # 49, 55
mar = (A + B) / (2.0 * C)
return mar
def check_sleepy(video_loc, show_video) :
# 定义常数
# 眼睛长宽比
# 闪烁阈值
EYE_AR_THRESH = 0.2
EYE_AR_CONSEC_FRAMES = 3
# 打哈欠长宽比
# 闪烁阈值
MAR_THRESH = 0.5
MOUTH_AR_CONSEC_FRAMES = 3
# 瞌睡点头
HAR_THRESH = 0.3
NOD_AR_CONSEC_FRAMES = 3
# 初始化帧计数器和眨眼总数
COUNTER = 0
TOTAL = 0
# 初始化帧计数器和打哈欠总数
mCOUNTER = 0
mTOTAL = 0
# 初始化帧计数器和点头总数
hCOUNTER = 0
hTOTAL = 0
# 初始化DLIB的人脸检测器(HOG),然后创建面部标志物预测
print("[INFO] loading facial landmark predictor...")
# 第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器
detector = dlib.get_frontal_face_detector()
# 第二步:使用dlib.shape_predictor获得脸部特征位置检测器
predictor = dlib.shape_predictor(model_path)
# 第三步:分别获取左右眼面部标志的索引
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
# 第四步:打开cv2 本地摄像头
cap = cv2.VideoCapture(video_loc)
# 从视频流循环帧
flag = 0 # 判断是否困倦
eye_close_cnt = 0 # 闭眼次数
frames_nums = cap.get(7)
print(f"视频总帧数为{frames_nums}")
def get_PERCLOSE():
return eye_close_cnt / frames_nums * 100 # 注意眼睛闭合帧数 和 眨眼次数是不相同的。一次眨眼 == 3次眼睛闭合, 还有这不能用整除
cnt_frame = 0
while True:
# 第五步:进行循环,读取图片,并对图片做维度扩大,并进灰度化
ret, frame = cap.read()
if not ret :
break
if cnt_frame % 100 == 0:
print(f"正在处理第{cnt_frame}帧")
cnt_frame += 1
frame = imutils.resize(frame, width=720)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 第六步:使用detector(gray, 0) 进行脸部位置检测
rects = detector(gray, 0)
# 第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息
for rect in rects:
shape = predictor(gray, rect)
# 第八步:将脸部特征信息转换为数组array的格式
shape = face_utils.shape_to_np(shape)
# 第九步:提取左眼和右眼坐标
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
# 嘴巴坐标
mouth = shape[mStart:mEnd]
# 第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EAR
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
ear = (leftEAR + rightEAR) / 2.0
# 打哈欠
mar = mouth_aspect_ratio(mouth)
# 第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
mouthHull = cv2.convexHull(mouth)
cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1)
# 第十二步:进行画图操作,用矩形框标注人脸
left = rect.left()
top = rect.top()
right = rect.right()
bottom = rect.bottom()
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 1)
'''
分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动
'''
# 第十三步:循环,满足条件的,眨眼次数+1
if ear < EYE_AR_THRESH: # 眼睛长宽比:0.2
COUNTER += 1
eye_close_cnt += 1
else:
# 如果连续3次都小于阈值,则表示进行了一次眨眼活动
if COUNTER >= EYE_AR_CONSEC_FRAMES:# 阈值:3
TOTAL += 1
# 重置眼帧计数器
COUNTER = 0
if show_video:
# 第十四步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示
cv2.putText(frame, "Faces: {}".format(len(rects)), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "COUNTER: {}".format(COUNTER), (150, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Blinks: {}".format(TOTAL), (450, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)
'''
计算张嘴评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示打了一次哈欠,同一次哈欠大约在3帧
'''
# 同理,判断是否打哈欠
if mar > MAR_THRESH:# 张嘴阈值0.5
mCOUNTER += 1
if (show_video):
cv2.putText(frame, "Yawning!", (10, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
# 如果连续3次都小于阈值,则表示打了一次哈欠
if mCOUNTER >= MOUTH_AR_CONSEC_FRAMES:# 阈值:3
mTOTAL += 1
# 重置嘴帧计数器
mCOUNTER = 0
if show_video:
cv2.putText(frame, "COUNTER: {}".format(mCOUNTER), (150, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "MAR: {:.2f}".format(mar), (300, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Yawning: {}".format(mTOTAL), (450, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)
"""
瞌睡点头
"""
# 第十五步:获取头部姿态
reprojectdst, euler_angle = get_head_pose(shape)
har = euler_angle[0, 0]# 取pitch旋转角度
if har > HAR_THRESH:# 点头阈值0.3
hCOUNTER += 1
else:
# 如果连续3次都小于阈值,则表示瞌睡点头一次
if hCOUNTER >= NOD_AR_CONSEC_FRAMES:# 阈值:3
hTOTAL += 1
# 重置点头帧计数器
hCOUNTER = 0
if show_video:
# 绘制正方体12轴
for start, end in line_pairs:
cv2.line(frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))
# 显示角度结果
cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (10, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 255, 0), thickness=2)# GREEN
cv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (150, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (255, 0, 0), thickness=2)# BLUE
cv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (300, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)# RED
cv2.putText(frame, "Nod: {}".format(hTOTAL), (450, 90),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)
if show_video:
# 第十六步:进行画图操作,68个特征点标识
for (x, y) in shape:
cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)
# print('嘴巴实时长宽比:{:.2f} '.format(mar)+"\t是否张嘴:"+str([False,True][mar > MAR_THRESH]))
# print('眼睛实时长宽比:{:.2f} '.format(ear)+"\t是否眨眼:"+str([False,True][COUNTER>=1]))
# 确定疲劳提示:闭眼15%,打哈欠1次,瞌睡点头3次
if get_PERCLOSE() > 15 or mTOTAL>=1 or hTOTAL>=3:
if show_video:
cv2.putText(frame, "SLEEP!!!", (100, 200),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 3)
flag = 1
# print("检测到困倦,提前终止")
# break
# 按q退出
if show_video:
cv2.putText(frame, "Press 'q': Quit", (20, 500),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)
# 窗口显示 show with opencv
cv2.imshow("Frame", frame)
# if the `q` key was pressed, break from the loop
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头 release camera
cap.release()
# do a bit of cleanup
cv2.destroyAllWindows()
print(f"总帧数{cnt_frame}")
print(f"perclose = {eye_close_cnt / frames_nums * 100} % ")
print(f"眨眼 = {TOTAL}")
print(f"哈欠次数 = {mTOTAL}")
print(f"点头次数 = {hTOTAL}")
return [flag, get_PERCLOSE(), TOTAL, mTOTAL, hTOTAL]
统计一个小时的视频,给每1min打上标签
- 如果想要实时显示,就运行test_show
- 如果想要更快的统计,就把上面代码的这一段注释放开
- 上面放开后,统计的结果只有flag可用,其他的不一定是1min的数据。
"""
@author:fuzekun
@file:check_sleepy.py
@time:2023/03/03
@description:
4. 剪切
5. 统计
"""
import os.path
from moviepy.video.io.VideoFileClip import VideoFileClip
import pandas as pd
from camera.check_sleepy import check_sleepy
path = 'd:/data/camera/' # 待切割视频存储目录
file_name = 'WIN_20221118_09_53_21_Pro.mp4'
"""
如果获取全部, 就获取每一次的眨眼,点头,哈欠,perclose等信息
但如果想快点,还是直接检测到困,就直接停下来,不困继续检测。
"""
# get_other_message = 0 # 是否获取每一分钟的全部信息
"""
是否展示,也就是出现那个视频,展示的时候,展示,运行的时候就不用了
"""
show_video = 0 # 展示的时候,可以使用test_run(), 然后show_video = 1;
def run():
save_path = 'd:/data/camera/'
save_name = file_name + '_label.csv' # 文件名称就是 受试者_label.csv
source_file = path + file_name
source_video = VideoFileClip(source_file)
total_sec = int(source_video.duration)
list = [] # 存储每一分钟的结果
field_name = ['flag', 'perclose', 'eye_total', 'mouse_total', 'node_total']
try:
for i in range(0, min(total_sec, 3600), 60): # 截取一小时
start_time = i
stop_time = min(total_sec, i + 60)
if stop_time - start_time < 60: # 不到1min,不进行截取
break
video = source_video.subclip(int(start_time), int(stop_time)) # 执行剪切操作
target_file = path + "tmp" + ".mp4" # 临时文件的地址和初始文件的地址相同,名字叫做tmp
video.write_videofile(target_file) # 保存视频
print(f"---------------正在处理第{i // 60}到第{i // 60 + 1}分钟钟的视频---------------")
ans = check_sleepy(target_file, show_video)
list.append(ans)
print(f"-------------第{i // 60}到第{i // 60 + 1}分钟的视频处理完成------------------")
print("------------ 最终结果为 ------------")
print(list)
# 如果最后完成,重新写入一次,这个是因为,追加方式的序号都是0
ans = pd.DataFrame(columns=field_name, data=list)
ans.to_csv(os.path.join(save_path, save_name))
except :
print("程序异常终止,保存文件")
# 如果最后完成,重新写入一次,这个是因为,追加方式的序号都是0
print(list)
ans = pd.DataFrame(columns=field_name, data=list)
ans.to_csv(os.path.join(save_path, save_name))
def test_show():
"""
展示的时候,跑这个代码
"""
global show_video
show_video = 1
run()
def test_total_len():
"""
测试截取视频,最后一段会不会报错
"""
path = 'd:/data/camera/' # 待切割视频存储目录
file_name = 'WIN_20221118_09_53_21_Pro.mp4'
source_file = path + file_name
source_video = VideoFileClip(source_file)
total_sec = int(source_video.duration)
for i in range(0, min(total_sec, 3600), 60): # 超过1小时,截取一小时
start_time = i
stop_time = min(total_sec, i + 60)
if stop_time - start_time < 60: # 最后不到1min,的不进行截取,也就是不到1h,最后一段舍弃。
break
video = source_video.subclip(int(start_time), int(stop_time)) # 执行剪切操作
print(f"---------------正在处理第{i}到第{i + 60}分钟的视频---------------")
print(f"-------------第{i}分钟到第{i + 60}的视频处理完成------------------")
def test_read_write() :
list = [[1,2,3,3,4]]
field_name = ['flag', 'perclose', 'eye_total', 'mouse_total', 'node_total']
save_path = 'd:/data/camera/'
save_name = 'label.csv'
ans = pd.DataFrame(columns=field_name, data=list)
ans.to_csv(os.path.join(save_path, save_name), mode='a', header=False)
def test_check() :
target_file = 'd:/data/camera/tmp.mp4' # 待切割视频存储目录
ans = check_sleepy(target_file, show_video)
if __name__ == '__main__':
run()
结果展示
最后就会给每1min的视频打上label了。