归一化
在解决分类问题时,将结果映射到特定范围内,一般在(0,1)之间。
例如,做分类问题时,输出的结果为(x1,x2,x3)经过归一化之后得到(0.2,0.1,0.7),认为分到类别1的概率为0.2,分到类别2的概率为0.1,分到类别3的概率为0.7
激活
如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这种情况就是最原始的感知机(Perceptron)。
如果使用的话,激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。
Sigmoid函数
Tanh函数
ReLU函数
参考自百度百科
归一化与激活的先后顺序
参考:
作者:成都孙笑川
链接:https://www.nowcoder.com/discuss/421969?type=6
来源:牛客网
一般是卷积-BN-Relu.
Sigmoid:如果先BN再Sigmoid,由于BN后方差接近于1,均值接近于0,使得BN后的数据接近于Sigmoid的线性区域,降低了激活函数的非线性能力,这种情况下建议Sigmoid+BN。
Relu:如果先Relu再BN,Relu后部分神经元已经失活,失活的神经元将对BN的归一化产生影响,这种情况下建议BN+Relu。