通过卷积的方式记录一些关键特征,而不是记住所有特征,避免过拟合,从而提高模型的泛化能力。
卷积
卷积核的数量等于输出的数量
卷积的步数可以自定义
输出大小等于输入的大小减卷积核的大小除以步长加一
池化
池化分为最大池化和平均池化
最大池化:取最大值
平均池化:取平均值
池化的步数一般等于池化层的大小
池化边界不够时可以用0padding,一般都是舍弃
全连接
在输入后加入十点过数量的池化和卷积最后加一个全连接层将所有矩阵展平,最后经过sigmoid函数实现分类
通过卷积的方式记录一些关键特征,而不是记住所有特征,避免过拟合,从而提高模型的泛化能力。
卷积核的数量等于输出的数量
卷积的步数可以自定义
输出大小等于输入的大小减卷积核的大小除以步长加一
池化分为最大池化和平均池化
最大池化:取最大值
平均池化:取平均值
池化的步数一般等于池化层的大小
池化边界不够时可以用0padding,一般都是舍弃
在输入后加入十点过数量的池化和卷积最后加一个全连接层将所有矩阵展平,最后经过sigmoid函数实现分类