LOESS局部加权非参数回归

·  非参数回归  ·


1. 采用非参数回归的必要性:

一般来讲两个变量之间的关系有时候是非常微妙的,仅仅用简单的直线、曲线参数方程模型是远远不够的,所以有必要采用非参数回归。

 

2. 非参数回归的特点

  • 关于两个变量的关系探索是开放式的,不套用任何现成的数学函数。
  • 所你和的曲线可以很好地描述变量之间的细微变化
  • 非参数回归提供的是万能的拟合曲线,不管多么复杂的曲线关系都能进行成功的拟合。

3. 非参数回归对比参数回归的优点

下面这幅图就能比较好的说明问题,x与y的关系,如果用参数模型估计,模拟出来的模型就一定是要么线性的,要么曲线的。不会模拟出又具有线性的部分,又具有非线性的部分。

 

 

 

 

 

 

·  LOESS局部加权回归  ·


1. 是一种非参数回归。

2. 1979年CLEVELAND首创

3. 使用加权最小平方法进行局部拟合

 

计算点(x6, y6)的LOESS平滑值的方法如下:

  • 以x6为中心确定一个区间,宽度可灵活掌握
  • 定义区间内所有点的权数&#x
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值