一、从“买菜记”看懂Lasso本质
假设你要买5种菜做晚餐,但预算只有50元。你会在有限的预算下优先购买重要的食材,而放弃部分不必要的配料。Lasso回归就像这个精打细算的买菜过程:在建立模型时,它会自动筛选出重要特征(保留关键食材),同时舍弃冗余特征(剔除不重要的配料)。
关键差异点
:相比普通线性回归无脑使用所有特征,Lasso回归自带「特征筛选」buff,有效解决多重共线性问题!
二、Lasso硬核原理科普
1. 数学表达式(别慌!三秒看懂)
原版线性回归的损失函数:
Loss=∑(yi−yi^)2Loss=∑(yi−yi^)2
Lasso回归的霸气改良版:
Loss=∑(yi−yi^)2+α∑∣wj∣Loss=∑(yi−yi^)2+α∑∣wj∣
- α:正则化力度(预算金额)
- |w_j|:对所有特征系数求绝对值(总采购成本)
敲黑板:当α增大时
三、选Lasso还是岭回归?三句话攻略
- 特征爆炸时的首选:当特征数量>样本量(p>n),果断用Lasso
- 核心诉求是特征选择:比如医疗数据分析需要筛选关键指标
- 牺牲小部分精度换可解释性:Lasso的结果更像“重点突出”的工作报告
避坑提醒
:当多个特征高度相关时,Lasso可能随机保留其中一个(这时候考虑用弹性网络)!
四、四个实战建议
- 数据必须归一化化:Lasso对量纲敏感,用最大-最小归一化处理
- α调节要合理:通过交叉验证选择最佳参数(可用
LassoCV
) - 常备替代方案:当遭遇重要特征被误删时,换岭回归再试
- 可视化神器:用学习曲线观察不同α下的系数变化
,模型会不断压缩不重要的特征系数直至归零,实现自动特征筛选!
下面是matlab代码实现:
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
filename = '数据集.xlsx'; % 改成你自己数据集e