利用matlab实现lasso算法回归预测,3分钟搞懂Lasso回归:自带特征选择的机器学习神器

一、从“买菜记”看懂Lasso本质

假设你要买5种菜做晚餐,但预算只有50元。你会在有限的预算下优先购买重要的食材,而放弃部分不必要的配料。Lasso回归就像这个精打细算的买菜过程:在建立模型时,它会自动筛选出重要特征(保留关键食材),同时舍弃冗余特征(剔除不重要的配料)。

关键差异点:相比普通线性回归无脑使用所有特征,Lasso回归自带「特征筛选」buff,有效解决多重共线性问题!

二、Lasso硬核原理科普

1. 数学表达式(别慌!三秒看懂)

原版线性回归的损失函数:
Loss=∑(yi−yi^)2Loss=∑(yi​−yi​^​)2

Lasso回归的霸气改良版
Loss=∑(yi−yi^)2+α∑∣wj∣Loss=∑(yi​−yi​^​)2+α∑∣wj​∣

  • α:正则化力度(预算金额)
  • |w_j|:对所有特征系数求绝对值(总采购成本)

敲黑板:当α增大时

三、选Lasso还是岭回归?三句话攻略

  1. 特征爆炸时的首选:当特征数量>样本量(p>n),果断用Lasso
  2. 核心诉求是特征选择:比如医疗数据分析需要筛选关键指标
  3. 牺牲小部分精度换可解释性:Lasso的结果更像“重点突出”的工作报告

避坑提醒:当多个特征高度相关时,Lasso可能随机保留其中一个(这时候考虑用弹性网络)!


四、四个实战建议

  1. 数据必须归一化化:Lasso对量纲敏感,用最大-最小归一化处理
  2. α调节要合理:通过交叉验证选择最佳参数(可用LassoCV
  3. 常备替代方案:当遭遇重要特征被误删时,换岭回归再试
  4. 可视化神器:用学习曲线观察不同α下的系数变化

,模型会不断压缩不重要的特征系数直至归零,实现自动特征筛选!

下面是matlab代码实现:

%% 清空环境变量

warning off % 关闭报警信息

close all % 关闭开启的图窗

clear % 清空变量

clc % 清空命令行

filename = '数据集.xlsx'; % 改成你自己数据集e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值