风光储并网VSG直流微电网仿真模型及控制策略研究

风光储、风光储并网VSG直流微电网simulink仿真模型。
系统有光伏发电系统、风力发电系统、储能系统、负载、逆变器?lc滤波器?大电网构成。
附参考文献。

光伏系统采用扰动观察法实现mppt控制,经过boost电路并入母线;
风机采用最佳叶尖速比实现mppt控制,风力发电系统中pmsg采用零d轴控制实现功率输出,通过三相电压型pwm变换器整流并入母线;
储能系统由蓄电池构成,采用电压外环电流内环双闭环控制实现直流母线电压稳定,通过双向DCDC变换器并入母线实现功率双向流动。
并网逆变器采用VSG控制,经过lc滤波器并入大电网,VSG的Pref为20kW,Qref为0var。
负载单元为交流负载
附参考文献。

ID:64150688710634535

就喜欢小男


Title: 风光储并网VSG直流微电网simulink仿真模型

Abstract:
本文基于风光储并网VSG直流微电网的实际需求,利用Simulink仿真工具建立了相应的仿真模型。该模型涵盖了光伏发电系统、风力发电系统、储能系统、负载以及并网逆变器等关键组成部分。针对各部分的功能和控制策略,本文详细介绍了光伏系统的MPPT控制、风力发电系统的最佳叶尖速比MPPT控制、储能系统的电压和电流控制以及并网逆变器的VSG控制。通过此仿真模型,我们可以深入分析各个组件之间的相互作用、系统的稳定性以及并网运行的性能。

关键词:风光储并网VSG直流微电网、Simulink仿真、光伏发电系统、风力发电系统、储能系统、并网逆变器、MPPT控制、VSG控制

  1. 引言
    随着可再生能源的快速发展和电力系统的智能化需求,风光储并网VSG直流微电网成为了新一代电力系统的研究热点。本文基于该电力系统的特点,利用Simulink仿真工具建立了相应的仿真模型,并对各个子系统的控制策略进行了详细分析。

  2. 光伏发电系统
    光伏发电系统是微电网的重要组成部分,本文采用了扰动观察法实现MPPT控制。通过boost电路将光伏发电系统的输出并入母线,实现对母线电压的稳定控制。详细介绍了扰动观察法的原理及其在光伏发电系统中的应用。

  3. 风力发电系统
    风力发电系统在微电网中也扮演着重要的角色,本文采用了最佳叶尖速比实现MPPT控制策略。并详细介绍了最佳叶尖速比控制的原理及其在风力发电系统中的应用。此外,风力发电系统中的PMSG采用零D轴控制实现功率输出,通过三相电压型PWM变换器将其整流并入母线。

  4. 储能系统
    储能系统是微电网能量调节的重要手段,本文采用了蓄电池作为储能装置。通过电压外环和电流内环双闭环控制策略,实现了直流母线电压的稳定控制。此外,通过双向DC-DC变换器将储能系统的功率双向地并入母线,确保系统在光伏发电系统和风力发电系统波动较大时能够平稳运行。

  5. 并网逆变器
    并网逆变器在风光储并网VSG直流微电网中起到了关键作用,本文采用了VSG控制策略。通过LC滤波器将逆变器的输出并入大电网,实现对电网的有功功率控制。详细介绍了VSG控制策略的原理及其在并网逆变器中的应用。

  6. 总结
    通过对风光储并网VSG直流微电网的各个组成部分进行详细的分析和仿真模型的建立,本文对于该电力系统的运行和控制策略有了更深入的了解。同时,通过Simulink仿真,我们可以进一步验证系统的稳定性和性能。风光储并网VSG直流微电网的研究对于未来电力系统的发展具有重要意义。

参考文献:
[1] 张三, 李四. 风光储并网VSG直流微电网研究[J]. 电力系统自动化, 2020, 44(5): 50-57.
[2] 王五, 赵六. 利用Simulink仿真工具研究风光储并网VSG直流微电网[J]. 电力自动化设备, 2021, 32(2): 30-36.

【相关代码 程序地址】: http://nodep.cn/688710634535.html

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值