pytorchOCR之数据篇

pytorchOCR之数据篇

文本检测
  1. 训练数据说明:
    标注图片:
    在这里插入图片描述
    标注文件:
    在这里插入图片描述
    如上图所示,标注文件中存放着标注框的坐标,一共7行即为7个框,对应图片中红色的框的四个角点的坐标如绿色圆圈所示,角点的记录顺序为1,2,3,4即为左上,右上,右下,左下的四个点的(x,y),一共8个坐标,,最后一个是标注框的label,其中###代表着文本模糊或者说可忽略文本,这种文本将不参与文本训练。
  2. 训练时需要的数据文件说明
    在训练时需要在config对应算法yaml文件中的train_file指定一个train_list.txt(名字可以改),该文件的样例如下:
    在这里插入图片描述
    即为图片的绝对地址和label文件的绝对地址,中间用‘\t’分隔。这样是为了把图片和标注文件一一对应,用于训练时读取。
  3. 验证时需要的数据文件说明
    在训练时需要在config对应算法yaml文件中的test_file指定一个test_list.txt(名字可以改),该文件的样例如下:
    在这里插入图片描述
    这里只需要图片的绝对地址,但是这里需要在config文件多给一个test_gt_path,即为验证数据的标注文件地址…
文本识别

文本识别这里只实现了目前最常用的crnn

  1. 训练数据说明
    训练图片:
    在这里插入图片描述
    训练的label:发布文章
    如上图,图片上的字和label一样。

  2. 训练时需要的数据文件说明
    在训练时需要在config对应算法yaml文件中的train_file指定一个train.txt(名字可以改)和key.txt,文件的样例如下:

  • train.txt
    wen
    图片文件的绝对地址和字符label,中间用 ‘\t’ 分隔。
  • key.txt
    假设你这里只识别数字,key.txt里面只有一行,那么里面存的就是
    在这里插入图片描述
    里面存放的就是一行类别字符,也就是所有训练集的label加验证集的label经过去重后的结果。
  1. 验证时需要的数据文件说明
    在训练时需要在config对应算法yaml文件中的test_file指定一个test.txt(名字可以改),该文件的样例如下:
    在这里插入图片描述
    这里和训练的一样,也是图片的绝对地址和字符label,中间用’\t’分隔。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值