crnn 不同backbone探索(准确率和测试时间)

本文探讨了在银行卡卡号识别任务中,不同backbone如mobilev3、LCNet、RepVGG、ResNet等结合CTC与LSTM的性能表现。实验结果显示,对于端侧,mobilev3和LCNet表现良好,而在服务端,RepVGG展现出了高精度和快速的推断速度。通过数据增强和优化策略,模型准确率进一步提升,特别是LCNet的准确率显著增加。结论强调了数据质量和模型优化对性能提升的重要性。
摘要由CSDN通过智能技术生成

crnn 不同backbone探索

测试环境

  1. v100 10cpu 64Gi MEM
  2. torch==1.6.0

测试数据:银行卡卡号识别

  1. 训练集:32000+
  2. 验证集::3000+

训练

  1. train 200 epoch

测试

  1. 100张图求平均,跑了3遍

结果

模型准确率模型大小(M)说明inferTime(GPU/ms)inferTime(CPU/ms)
mobilev3+CTC92.272.63baseline
mobilev3+CTC93.912.631+2
mobilev3+CTC94.332.631+3
mobilev3+CTC95.002.631+3+55.7+6.0+5.919.4+19.0+18.5
lcnet+CTC95.534.751+35.9+5.8+5.820.7+21.8+20.2
mobilev3+2blstm+CTC94.5813.61+2+49.8+9.6+9.744.3+43.9+45.3
repvggA0+CTC96.3432.91+2
repvggA0+CTC96.4532.91+32.2+2.3+2.316.4+16.3+16.4
repvggA1+CTC96.9352.81+32.4+2.4+2.422.0+21.5+21.9
resnet18+CTC96.3445.51+2
resnet18+CTC96.5945.51+34.2+4.2+4.129.6+30.0+29.1
resnet34+CTC96.65861+26.8+6.7+6.852.4+48.3+48.4
resnet34+CTC96.84861+3
densenet121+CTC97.90861+317.8+18.5+18.2127.2+123.7+127.5
  1. add Text-Image-Augmentation
  2. use step Lr
  3. use poly Lr
  4. add blstm
  5. load premodel

基本结论:对于端侧模型mobilev3和lcnet(0.5)都不错,对于服务端模型,repvgg是个不错的选择,速度快,精度高。

继续提高

基于repvgg的思路,继续提升小模型准确率:

模型准确率模型大小(M)说明inferTime(GPU/ms)inferTime(CPU/ms)提升
mobilev3+CTC94.332.63None5.7+6.0+5.919.4+19.0+18.5baseline
mobilev3+CTC94.582.6315.7+6.0+5.919.4+19.0+18.50.25
mobilev3+CTC94.812.631+25.7+6.0+5.919.4+19.0+18.50.48
lcnet+CTC95.534.75None5.9+5.8+5.820.7+21.8+20.2baseline
lcnet+CTC95.834.7515.9+5.8+5.820.7+21.8+20.20.3
lcnet+CTC96.374.751+25.9+5.8+5.820.7+21.8+20.20.84
lcnet+CTC96.404.751+2+35.9+5.8+5.820.7+21.8+20.20.87
lcnet+CTC98.384.751+2+3+45.9+5.8+5.820.7+21.8+20.22.85
  1. add repvggblock
  2. add L2 loss
  3. warm up 20 epoch
  4. add 3w+ train data

基本结论: 加数据,yyds

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值