ACL2024-长尾知识在检索增强型大型语言模型中的作用
On the Role of Long-tail Knowledge in Retrieval Augmented Large Language Models
Authors: Dongyang Li, Junbing Yan, Taolin Zhang, Chengyu Wang, Xiaofeng He, Longtao Huang, Hui Xue, Jun Huang
1.概览
问题解决:
这篇论文研究了在大型语言模型(LLMs)中,如何通过检索增强生成(RAG)技术来提升模型对长尾知识(long-tail knowledge)的处理能力。长尾知识指的是那些在大规模预训练中不常见,但在实际应用中又非常重要的知识。论文指出,尽管RAG技术能够通过检索相关文档来增强LLMs的回答质量,但它通常不加区分地增强所有查询,而忽略了LLMs真正需要的长尾知识。
研究成果:
研究者提出了一种基于生成预期校准误差(Generative Expected Calibration Error, GECE)的方法来检测长尾知识,并只在查询涉及长尾知识时才进行文档检索和知识融合。实验结果表明,与现有的RAG流程相比,该方法在平均推理时间上实现了超过4倍的加速,并且在下游任务中性能得到了一致性提升。
2. 研究背景
技术背景:
大型语言模型(LLMs)在自然语言处理(NLP)领域取得了显著的成就,但它们在处理长尾知识时仍然存在挑战。RAG技术通过检索补充知识并将其注入模型来增强LLMs的生成能力,但这种方法往往忽略了对长尾知识的特别关注。
发展历史:
RAG技术的发展可以追溯到早期的检索-生成模型,随着深度学习技术的进步,尤其是Transformer架构的出现,RAG技术得到了快速发展。近年来,研究者们开始关注如何更有效地利用RAG技术来提升LLMs在特定任务上的表现。
3. 技术挑战
困难:
- 知识冗余: 在预训练阶段,LLMs已经学习了大量的通用知识,RAG技术在处理常见知识时可能会导致计算资源的浪费。
- 长尾知识检测: 如何有效地检测和区分LLMs在处理查询时是否需要长尾知识是一个挑战。
- 效率与性能的平衡: 在提升模型性能的同时,如何保持或提升推理效率是一个关键问题。
4. 破局方法
解决方法:
- GECE指标: 论文提出了一种新的指标GECE,结合了统计学和语义学的方法来衡量知识的“长尾性”, 通过METEOR分数和LLMs生成文本的平均token概率来计算。
- 长尾知识检测: 使用GECE值来检测输入查询是否涉及长尾知识。
- 选择性增强: 改进的RAG流程, 只有当查询涉及长尾知识时,才进行文档检索和知识融合,从而提高了推理效率。
ECE:
ECE = ∑ i = 1 B n b i N ∣ a c c ( b i ) − c o n f ( b i ) ∣ \text{ECE} = \sum_{i=1}^{B}\frac{n_{b_i}}{N}|acc(b_i) - conf(b_i)| ECE=i=1<