poj-3264

13 篇文章 0 订阅
1 篇文章 0 订阅
// 2404K    3688MS  G++
#include <stdio.h>
#include <string.h>

const int MAX = 50010;

struct TreeNode {
    int left;
    int right;
    int Max;
    int Min;
};

typedef struct TreeNode TreeNode;

TreeNode tree[MAX<<2];

#define INF 9999999

void buildTree(int pos, int left, int right) {
    TreeNode & curNode = tree[pos];
    curNode.left = left;
    curNode.right = right;
    curNode.Max = -INF;
    curNode.Min = INF;
    if (left == right) {
        return;
    } else {
        int mid = (left + right)>>1;
        buildTree(pos<<1, left, mid);
        buildTree(pos<<1|1, mid+1, right);
    }
}

void pushUp(int pos) {
    if (pos == 1) {
        return;
    } else {
        int parentPos = pos>>1;
        TreeNode & parentNode = tree[parentPos];
        TreeNode & leftNode = tree[parentPos<<1];
        TreeNode & rightNode = tree[parentPos<<1|1];
        int childMax = leftNode.Max > rightNode.Max ? leftNode.Max: rightNode.Max;
        int childMin = leftNode.Min < rightNode.Min ? leftNode.Min: rightNode.Min;

        char continuePushUp = 0;
        int parentMax = parentNode.Max;
        int parentMin = parentNode.Min;
        if (parentMax < childMax) {
            continuePushUp = 1;
            parentNode.Max = childMax;
        }
        if (parentMin > childMin) {
            continuePushUp = 1;
            parentNode.Min = childMin;
        }
        // if (continuePushUp) {
        //     pushUp(parentPos);
        // }
    }
}

void updateSingleCow(int pos, int cowId, int cowHeight) {
    TreeNode & curNode = tree[pos];
    int curLeft = curNode.left;
    int curRight = curNode.right;

    if (curLeft == curRight && curLeft == cowId) {
        curNode.Max = cowHeight;
        curNode.Min = cowHeight;
    } else {
        int mid = (curLeft + curRight)>>1;
        if (cowId <= mid) {
            updateSingleCow(pos<<1, cowId, cowHeight);
        } else {
            updateSingleCow(pos<<1|1, cowId, cowHeight);
        }
    }
    pushUp(pos);
}

void query(int pos, int rangeLeft, int rangeRight, int & max, int & min) {
    TreeNode & curNode = tree[pos];
    int curLeft = curNode.left;
    int curRight = curNode.right;
    if (curLeft == rangeLeft && curRight == rangeRight) {
        max = curNode.Max;
        min = curNode.Min;
    } else {
        int mid = (curLeft + curRight)>>1;
        if (rangeRight <= mid) {
            query(pos<<1, rangeLeft, rangeRight, max, min);
        } else if (rangeLeft <= mid && rangeRight > mid) {
            int max1;
            int max2;
            int min1;
            int min2;
            query(pos<<1, rangeLeft, mid, max1, min1);
            query(pos<<1|1, mid+1, rangeRight, max2, min2);
            max = max1 > max2 ? max1: max2;
            min = min1 < min2 ? min1: min2;
        } else if (rangeLeft > mid) {
            query(pos<<1|1, rangeLeft, rangeRight, max, min);
        }
    }
}

int cowNum;
int queryNum;
int main() {
    while (scanf("%d %d", &cowNum, &queryNum) != EOF) {
        buildTree(1, 1, cowNum);
        for (int i = 1; i <= cowNum; i++) {
            int cowHeight;
            scanf("%d", &cowHeight);
            updateSingleCow(1, i, cowHeight);
        }
        int rangeBegin;
        int rangeEnd;
        for (int i = 1; i <= queryNum; i++) {
            int max;
            int min;
            scanf("%d %d", &rangeBegin, &rangeEnd);
            query(1, rangeBegin, rangeEnd, max, min);
            printf("%d\n", max - min);
        }
    }
}

险过... 果然这道题用线段树做不是最优,应该有专门的RMQ算法,只是手痒,用线段树搞了一把,

WA了一次,因为给的INF一开始是99999,而题目正常值最大能到100000 ......

从线段树角度看,是到很简单的题,每个节点保存当前区间的最大和最小值即可,查询时根据区间分布情况,递归或者直接比较即可。

这道题其实没有最充分的利用线段树的优点: 可以适应动态变化(一开始初始化cow的高度也算是种动态变化吧) 以及 延迟标记, 毕竟不是为线段树而生的题.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值