本地没有环境跑深度学习模型? 阿里云天池实验室它不香吗

本文介绍了如何使用阿里云天池实验室作为Google Colab的替代平台进行深度学习模型训练。作者详细阐述了天池实验室的界面操作,包括新建项目、上传文件、解压文件以及查看GPU信息等步骤,并分享了解决文件解压问题的经验。此外,还展示了检查GPU可用性、安装所需库以及运行训练脚本的过程,强调了该平台对于免费GPU资源的利用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

前几天做深度学习模型训练使用 Google 的 colab 总是掉,搞得很烦。然后那天我队友 “叶伏天” 和我说有一个类似于 Google colab 的平台,可以训练,虽然也有 8 小时的限时,但是这两个我可以替换使用,甚至一起跑实验,显卡配置也可以满足我的需求训练模型的需求。这个平台就是阿里云天池实验室。

二、阿里天池实验室

进入网页,选择天池Notebook:https://tianchi.aliyun.com/

然后点击我的实验室,图右红框为最近建立的项目:

进入下面的界面后点击新建,就会出现红色箭头的项目,一般想跑自己的项目就可以设置成私有,完成后点击右侧蓝色编辑框,即可进入界面:

进入到这个界面就可以看到一些基本的操作空间,点击 File 可以新建Jupyter Notebook,点击帮助文档,里面会有一些常见的问题和操作。新建之后就可以查看你的文件路径或者点击新建终端 Terminal 也可以。

三、基本使用

说明一下,阿里云天池实验室你可以自由地上传自己的压缩包文件,解压命令为:

!unzip 你的导包文件名.zip 

解压后可以在终端黑窗用指令查看路径进行操作。

使用 pwd 命令进行操作显示路劲,ls命令查看文件下的目录,cd切换到指定目录,unzip命令可以解压缩文件。

解压文件可能会出现报错:


当时上传的数据、代码和各种文件总共有 900 多MB,上传好了进去发现 unzip 不出来,又在网络情况好的情况下,重新将数据和代码打包成 zip 文件再上传,解决了问题。

新建好notebook,查看所安装的包:

!pip list

查看 GPU 信息:

!nvidia-smi 

查看 GPU 能否使用:

import tensorflow as tf

print(tf.test.is_gpu_available())
# True

返回 True 则说明可以正常使用

查看当前路径:

!pwd 

在这里插入图片描述

进入指定路径:

import os
os.chdir("路径") 

安装缺少的第三方库,比如说安装 tensorflow-gpu 版本:

!pip install tensorflow-gpu==1.4.0 --user 

安装tensorflow

!pip install tensorflow==1.4.0 --user 

训练的话按照平时执行 .py 文件的方法就行

!python train_model.py 

显示GPU已加载:

开始训练:

训练产生的文件:
在这里插入图片描述

由于这个阿里云只有 5G 的空间,使用的数据不要太大了,一般训练模型也够用了。总之免费的使用,也是挺不错的,主要是要使用GPU

说明:tensorflow和keras的版本适配,可以参考下面的网站
https://docs.floydhub.com/guides/environments/

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值