Anaconda为Jupyter notebook添加内核(kernel)

Anaconda安装及创造环境看这篇:https://blog.csdn.net/fyfy96/article/details/128155222?spm=1001.2014.3001.5501

1.打开Anaconda Prompt,进入环境

在这里插入图片描述

2.Jupyter notebook 添加内核

 pip install jupyter notebook

3.安装ipykernel

pip install ipykernel
python -m ipykernel install --name TF2
这里面的‘TF2’是核心的名字,也可以随便取

重新启动Jupyter notebook 即可以看到新的Kernel已经加载
在这里插入图片描述

### 添加 Anaconda 内核Jupyter Notebook 为了使 Anaconda 创建的 Python 环境能够作为 Jupyter Notebook内核使用,需执行一系列特定操作以确保新环境被识别并可用。 #### 准备工作 确认已安装 `ipykernel` 包。此包允许将任意 Python 解释器注册为可用于 Jupyter 应用程序的内核[^2]。 #### 创建与配置 TensorFlow 环境 通过命令行工具如 Anaconda Prompt 或终端,在其中输入如下指令创建名为 tensorflow2.0 的全新 conda 虚拟环境,并激活该环境: ```bash conda create --name tensorflow2.0 python=3.x conda activate tensorflow2.0 ``` 接着在同一环境中安装必要的软件包,包括但不限于 ipykernel 和其他所需依赖项: ```bash conda install ipykernel pip install tensorflow # 如果需要的话 ``` #### 注册新的 KernelJupyter 完成上述步骤之后,利用下面这条命令把当前活跃的 conda 环境添加Jupyter Notebooks 可选的 kernels 中去: ```bash python -m ipykernel install --user --name=tensorflow2.0 --display-name "Python (tensorflow2.0)" ``` 这一步骤会向用户的 .json 文件中写入有关这个新 kernel 的元数据信息,使得它能够在启动 Jupyter Notebook 后立即可见[^4]。 最后可以切换回 base(root) 环境并通过运行 `jupyter kernelspec list` 来验证新增加kernel 是否成功加入到了现有的 kernel 列表里[^3]。 一旦完成了这些设定,重启 Jupyter Notebook 即可在新建文档时看到刚刚添加的那个带有自定义名称(此处为 "Python (tensorflow2.0)")的新选项卡供选择。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值