jupyter notebook添加环境/添加内核(超详细)

前言

今天突发奇想,想发一篇文章,可能是因为刚刚碰巧解决了一个问题(jupyter notebook添加并切换内核),后来写文章的时候才发现,这个方法已经有大佬提过了,如果你不想听我啰嗦就翻到参考部分,查看大佬的文章吧。

1 jupyter notebook添加内核/环境

        1.1 进入Anaconda Prompt

                

        1.2 创建新的python环境

                键入(复制粘贴也是可以的)conda create -n 虚拟环境名称 python=版本号 创建新的python环境:

                

                一路同意就行,等待完成后,键入conda env list 查看当前所有的python环境:

                

                看到我们刚才创建的环境了!

                对了,你可键入conda remove -n 环境名 --all 删除指定环境,“--all”对应删除环境下所有的包。

        1.3 于新环境下安装ipykernel

                还是在Anconda Prompt,键入conda activate 虚拟环境名称 进入到指定环境中:

                

                前面括号里的内容由base变为encname了!键入conda install ipykernel 为当前环境(前面括号里的)安装ipykernel,同样一路同意:

                

                等待完成后,键入conda list 查看当前环境下所有包,能找到ipykernel就代表安装成功了,或者键入python -m ipykernel --version 出现以下内容就代表安装成功了:

                

        1.4 添加内核

                在当前环境下键入python -m ipykernel install --user --name=内核真名 --display-name 在内核选择时显示的内核假名 添加内核,内核真名不必要与上面创建的环境名相同(相同还是好些),这样创建的内核就会指向当前环境,出现下面内容就代表创建成功了: 

                

        1.5 检测内核是否添加正确

                如果进行上述步骤都没有问题,在jupyter notebook中也可以选择相应内核,但就是不管用(比如环境下明明有某个包,但import时还是找不到),那可能是因为你的内核并不指向你认为的虚拟环境,内核≠虚拟环境,如何查看内核指向的虚拟环境呢?

                还是在Anaconda Prompt中,键入jupyter kernelspec list 查看jupyter所有内核,找到你的内核,进入到对应的目录下:

                

                对了,你可以键入jupyter kernelspec remove 内核名称 删除指定内核。

                打开kernel.json文件,这条路径是不是很眼熟,不就是在pycharm中选择环境时添加的路径嘛,确保这个路径对应着你想要的虚拟环境,这样该内核就指向了你想要的虚拟环境:

                

2 jupyter notebook切换环境

                打开jupyter notebook,kernel->Change kernel->envname_env选择你的环境(内核)吧!

        ​​​​​​​        

参考

【最全指南】如何在 Jupyter Notebook 中切换/使用 conda 虚拟环境?_jupyter notebook 使用conda-CSDN博客

conda install nb_conda失败原因_为什么conda install不了-CSDN博客

jupyter notebook添加内核_jupyter添加内核-CSDN博客

结语

这个方法确实是自己偶然发现的,那时我就奇怪,为什么个把月前添加的内核管用而现在添加的却不管用了,于是我想在内核list提到的路径下寻找两个内核的不同(管用的和不管用的),翻开kernel.json文件的瞬间就锁定了“argv”里的这个路径,最终解决了问题。

感慨一个bug的解决伴随的许多的偶然,偶尔看到了一篇文章,偶尔看到了熟悉的字符,偶尔...

希望这个方法对你有用,文中出现的不当与错误也请指正!

提醒

有没有一句话能够让你迅速回忆起这篇文章的内容呢?

你创建内核了吗?你的内核就是你的环境吗? 

### 回答1: Jupyter Notebook 是一个交互式笔记本环境, 通常用于数据分析和编程. 它不能直接运行 C/C++ 程序, 但是可以通过一些技巧来间接实现. 一种方法是使用 Cython 来编译 C/C++ 代码, 然后在 Jupyter Notebook 中调用. 另一种方法是使用 Jupyter 中的 C++ 扩展, 例如 Xeus-cling, 它可以在 Jupyter Notebook 中直接运行 C++ 代码. 如果你想要在 Jupyter Notebook 中编写和运行 C/C++ 代码, 这些方法都是值得尝试的. ### 回答2: Jupyter Notebook是一个非常强大的交互式编程环境,但它本身并不直接支持运行C/C++代码。不过,我们可以借助一些插件和工具来实现在Jupyter Notebook中运行C/C++代码的目标。 一种方法是使用插件xeus-cling。这是一个基于Jupyter的C++ REPL(Read-Eval-Print Loop)内核,可以让我们在Jupyter Notebook中即时运行和调试C++代码。我们需要先安装xeus-cling内核,然后启动Jupyter Notebook,并选择C++内核开始编程。 另一种方法是通过IPython的魔术命令来运行C/C++代码。首先,我们需要安装GCC或者Clang编译器。然后,使用IPython的编译器魔术命令`%%cpp`来指定要编译和运行的C/C++代码块。例如,我们可以在一个代码块中使用`%%cpp`魔术命令来编写和运行C代码。 请注意,这种方法下,Jupyter Notebook并不真正支持C/C++语言,而是使用魔术命令将代码块交给编译器来执行,因此在Jupyter Notebook中无法使用C/C++的标准输入输出。 综上所述,我们可以通过安装插件xeus-cling或使用IPython的魔术命令来在Jupyter Notebook中运行C/C++代码。 ### 回答3: 要在Jupyter Notebook中运行C/C++代码,可以使用以下方法: 1. 安装GCC/G++编译器:Jupyter Notebook不直接支持C/C++语言,所以首先需要安装GCC/G++编译器。在Linux系统中,可以通过运行`sudo apt-get install build-essential`命令来安装。在Windows系统中,可以下载MinGW或者Cygwin等编译工具链来安装GCC/G++编译器。 2. 安装Ipykernel内核:为了在Jupyter Notebook中运行C/C++代码,需要添加Ipykernel内核。可以通过运行以下命令来安装:`pip install ipykernel`。 3. 创建一个C/C++内核:执行以下命令来创建一个新的内核: ``` python -m ipykernel install --user --name ckernel --display-name "C/C++" ``` 其中,`ckernel`是内核的名称,`C/C++`是在Jupyter Notebook中显示的内核名称。 4. 在Jupyter Notebook中运行C/C++代码:打开Jupyter Notebook,并选择使用C/C++内核的笔记本。然后,在代码单元格中输入C/C++代码,并按`Shift + Enter`运行。 需要注意的是,Jupyter Notebook中的C/C++代码是通过编译器进行编译和执行的,所以在执行之前需要正确编写C/C++代码,并处理任何编译错误或警告。此外,Jupyter Notebook中的C/C++代码只能在一个单元格中编写和执行,无法像Python代码一样进行分割和交互式操作。如果需要交互式操作,可以考虑使用其他支持C/C++的集成开发环境(IDE)。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值