tf.broadcast_to()

本文介绍了 TensorFlow 中 tf.broadcast_to() 函数的用法及其参数设置。通过实例演示了如何使用该函数将输入张量广播到指定形状的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.broadcast_to()

tf.broadcast_to()
将原始矩阵成倍增加
参数:

tf.broadcast_to(
    input,
    shape,
    name=None
)

使用案例:

import tensorflow as tf

a = [[1, 2, 3], [4, 5, 6]]
b = [4, 6]
sess = tf.Session()
print(sess.run(tf.broadcast_to(a, b)))#[[1 2 3 1 2 3]
 										[4 5 6 4 5 6]
										[1 2 3 1 2 3]
 										[4 5 6 4 5 6]]
``` !mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() print(f"训练数据形状: {train_images.shape}") print(f"训练标签长度: {len(train_labels)}") print(f"测试数据形状: {test_images.shape}") print(f"测试标签长度: {len(test_labels)}") from keras import models from keras import layers # 构建神经网络模型 network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) # 隐藏层:512个神经元,激活函数为ReLU network.add(layers.Dense(10, activation='softmax')) # 输出层:10个分类,激活函数为Softmax # 编译模型 network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 数据预处理 train_images = train_images.reshape((60000, 28 * 28)) # 将图像展平成一维向量 train_images = train_images.astype('float32') / 255 # 归一化到[0,1] test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 # 标签编码 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) # 训练模型 network.fit(train_images, train_labels, epochs=5, batch_size=128) # 测试模型性能 test_loss, test_acc = network.evaluate(test_images, test_labels) print('Test accuracy:', test_acc)```W0402 08:09:22.415642 140410418362176 deprecation.py:323] From /opt/conda/lib/python3.6/site-packages/tensorflow_core/python/ops/math_grad.py:1424: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where W0402 08:09:22.484165 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead. W0402 08:09:22.495126 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:973: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead. W0402 08:09:22.537523 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:2741: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead. W0402 08:09:22.546429 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead. W0402 08:09:22.548026 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead. W0402 08:09:22.566734 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. W0402 08:09:22.567799 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead. W0402 08:09:22.613820 140410418362176 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.
最新发布
04-03
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值