Tensorflow(五) —— Tensor的broadcast_to操作

本文介绍了Tensorflow中的broadcast_to操作,通过实例演示了如何利用该功能在不同维度和大小的张量间进行高效运算,重点讲解了广播规则、隐式和显式应用,以及与tf.tile的区别。适合理解Tensorflow中的数据传播原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 broadcast_to介绍

1.1 key idea

  • insert into 1 dim ahead if needed
  • expand dims with size 1 to same size
  • 即先升维再扩张到目标数据位数
  • broadcast 没有进行数据复制,但却完成相应数据的运算。

1.2how to understand

  • when it has no axis, create a new concept(axis)
  • when it has dim of size 1,

1.3 why broadcasting

  • for real demading
  • memory consumption

1.4 broadcastable

  • Match from last dim 最右边必须对齐 位数相同或者为1
  • if current dim=1,expand to same
  • if either has no dim, insert one dim and expand to same
  • otherwise, Not broadcastable
[4,32,14,14]
[2,32,14,14]
not broadcastable

2 隐式

"""
a = tf.random.uniform([4,28,28,3])

b = tf.constant(5.)
print("a+b:",(a+b).shape)

c = tf.ones([1])
print("a+c:",(a+c).shape)

d = tf.ones([28,28,3])
print("a+d:",(a+d).shape)

e = tf.ones([2,28,28,3])
try:
    print("a+e",(a+e).shape)
except Exception as error:
    print("a+e:",error)

3 显式

"""
a = tf.random.uniform([4,28,28,3])

b = tf.random.normal([4,1,1,1])
print("a+b:",(a+b).shape)

# 使用broadcast_to实现
c = tf.broadcast_to(b,a.shape)
print("c:",c.shape)

4 tf.broadcast_to VS tf.tile

"""
a = tf.ones([3,4])

b = tf.broadcast_to(a,[2,3,4])
print("b:",b.shape)

c_temp = tf.expand_dims(a,axis = 0)
c = tf.tile(c_temp,[2,1,1])  # []中数字表示该轴复制几次
print("c:",c.shape)

本文为参考龙龙老师的“深度学习与TensorFlow 2入门实战“课程书写的学习笔记

by CyrusMay 2022 04 06

Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\DevelopTools\Anaconda\envs\d2l\lib\site-packages\tensorflow\__init__.py", line 41, in <module> from tensorflow.python.tools import module_util as _module_util File "D:\DevelopTools\Anaconda\envs\d2l\lib\site-packages\tensorflow\python\__init__.py", line 40, in <module> from tensorflow.python.eager import context File "D:\DevelopTools\Anaconda\envs\d2l\lib\site-packages\tensorflow\python\eager\context.py", line 32, in <module> from tensorflow.core.framework import function_pb2 File "D:\DevelopTools\Anaconda\envs\d2l\lib\site-packages\tensorflow\core\framework\function_pb2.py", line 16, in <module> from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2 File "D:\DevelopTools\Anaconda\envs\d2l\lib\site-packages\tensorflow\core\framework\attr_value_pb2.py", line 16, in <module> from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2 File "D:\DevelopTools\Anaconda\envs\d2l\lib\site-packages\tensorflow\core\framework\tensor_pb2.py", line 16, in <module> from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2 File "D:\DevelopTools\Anaconda\envs\d2l\lib\site-packages\tensorflow\core\framework\resource_handle_pb2.py", line 16, in <module> from tensorflow.core.framework import tensor_shape_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2 File "D:\DevelopTools\Anaconda\envs\d2l\lib\site-packages\tensorflow\core\framework\tensor_shape_pb2.py", line 36, in <module> _descriptor.FieldDescriptor( File "D:\DevelopTools\Anaconda\envs\d2l\lib\site-packages\google\protobuf\descriptor.py", line 621, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot be created directly. If this call came from a _pb2.py file, your generated code is out of
03-10
<think>嗯,用户遇到了TensorFlow导入时的TypeError,错误信息是“Descriptors cannot be created directly”。首先,我需要回忆一下这个错误的常见原因。通常这种错误和Protocol Buffers(protobuf)的版本不兼容有关。TensorFlow依赖特定版本的protobuf库,如果版本过低或过高可能会导致这个问题。 接下来,我应该考虑用户可能的解决步骤。首先,升级protobuf可能是一个解决办法。用户需要安装3.20.x或更高但兼容的版本。比如,使用pip install --upgrade protobuf,或者指定版本如pip install protobuf>=3.20.3,<4.0.0。这可以确保protobuf和TensorFlow版本匹配。 另外,TensorFlow本身的版本也可能有问题。如果用户安装的是较旧的TensorFlow版本,可能不支持新版的protobuf,或者相反。这时候建议用户升级TensorFlow到最新稳定版,或者根据官方文档推荐的版本进行安装。 还有一个情况是依赖冲突。可能存在多个包依赖不同版本的protobuf,导致冲突。这时候用pip check检查依赖关系,或者创建干净的虚拟环境重新安装可能有效。 然后,我需要验证这些解决方案是否正确。查阅TensorFlow的官方文档或GitHub的issues,确认是否有类似的问题和推荐的解决方法。例如,TensorFlow 2.10及之后的版本可能需要protobuf>=3.20,而之前的版本可能需要protobuf<=3.20。所以用户需要根据自己安装的TensorFlow版本来调整protobuf版本。 另外,用户可能没有注意到需要重启Python内核或重新运行脚本,特别是在Jupyter notebook环境中,升级库后需要重启才能生效。 还有可能用户的缓存中有旧的编译文件,导致冲突。清理pip缓存或protobuf的编译缓存可能有帮助,比如使用--no-cache-dir选项安装,或者删除相关的.pyc文件。 最后,如果所有方法都无效,建议用户提供TensorFlow和protobuf的具体版本,以便进一步排查问题。可能需要更详细的错误日志来分析根本原因。</think>针对TensorFlow导入时出现的$TypeError: Descriptors\ cannot\ be\ created\ directly$错误,以下是分步解决方案: ### 1. 升级Protocol Buffers库 该错误通常由protobuf库版本不兼容导致,执行: ```bash pip install --upgrade protobuf # 或指定兼容版本 pip install protobuf>=3.20.3,<4.0.0 ``` ### 2. 升级TensorFlow版本 确保使用最新的TensorFlow稳定版: ```bash pip install --upgrade tensorflow # GPU版本升级 pip install --upgrade tensorflow-gpu ``` ### 3. 清理环境依赖 使用虚拟环境隔离依赖: ```bash python -m venv tf_env source tf_env/bin/activate # Linux/Mac pip install tensorflow ``` ### 4. 重建protobuf缓存 删除旧编译缓存: ```bash find /path/to/site-packages/google -name '*_pb2*.py' -delete ``` ### 验证方案 ```python import tensorflow as tf print(tf.__version__) # 应显示有效版本如2.10.0 ``` 该错误源于protobuf生成描述符的方式改变,TensorFlow 2.10+要求protobuf≥3.20[^1]。若仍报错,请提供完整错误日志和$pip\ list$输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值