摘 要
在核实已分配物理资源块数量的基础上,计算基站资源块效用因子。结合单站负载,对基站进行3个层次的阶梯式评估,筛选出关断候选集。在容量门限的前提下,计算关断候选集中所有基站的邻区集,计算其负载空间,只有负载空间满足需求才会触发基站关断行为。计算待关断基站的关转邻区集,核算其转移负载量,待邻区转移操作完成后,完成对源基站的关断。最后通过Matlab对算法进行了仿真验证,结果表明,无论是单站关断还是簇关断,均能有效提升原有算法的关断效率,可以实现比较理想的节能目标。
0 1
概 述
目前,能源紧张已经成为全球不可避免和日益尖锐的社会问题。在移动通信领域[1],随着用户对通信质量和服务要求的提高,技术更替升级的节奏越来越快。以5G[2]为代表的宽带多场景技术能够更加适应当前数据流量高速增长和行业应用不断变化的趋势。但同时,关于5G基站的绿色节能[3]也越来越成为一个约束性目标。毕竟,相比4G而言,实现相同面积的覆盖,5G需要部署2~3倍以上数量的基站。此外,由于5G天线采用Massive MIMO[4]天线阵列,单站功耗是4G的3倍左右。因此,深入分析5G基站的节能技术,不仅有助于降低基站能耗,其经济与社会价值也非常高[5]。
黄春红[6]从人工智能的角度介绍了5G基站的相关节能技术,但深度稍显不足。帅农村等人[7]提出了一种5G零碳基站的配置模型,涉及光伏组件和储能等配置,有一定的借鉴意义,但技术推广受区域的限制较强。戴莹[8]比较系统性地阐述了相关节能基站的智能关断技术和节能设计,但方案的准确度取决于样本数据的精确性。闫震等人[9]则基于二次指数平滑预测的方法研究了关于5G基站的节能方案,是一种概率模型,深受现网话务的影响。杨拓等人[10]则另辟蹊径地分析了5G终端环节的节能技术。实际上,实现5G基站基础节能的方案有很多种[11],包括符号关断、通道关断、载波关断和深度休眠等方案,不外乎硬节能和软节能。文献[12]也从保障业务的角度出发,结合差异化的业务属性,提出了一种优化5G能耗的方式——GSIC,但GSIC仍然存在以下问题:其一,现实中的业务基本为混合业务,纯Non-GBR业务很少;其二,没有考虑资源块的实际使用效率;其三,没有进一步考虑低负载GBR业务的转移场景。为此,本文从克服GSIC的缺陷出发,提出一种基于阶梯式评估的5G基站智能关断方法(Stepwise Evaluation based 5G gNB Intelligently Closing Algorithm,SEIC),对5G小区负载构建阶梯式的评估机制,借用物理资