1、题目描述
班上有 N 名学生。其中有些人是朋友,有些则不是。他们的友谊具有是传递性。如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友。所谓的朋友圈,是指所有朋友的集合。
给定一个 N * N 的矩阵 M,表示班级中学生之间的朋友关系。如果Mi = 1,表示已知第 i 个和 j 个学生互为朋友关系,否则为不知道。你必须输出所有学生中的已知的朋友圈总数。
示例1:
输入:
[[1,1,0],
[1,1,0],
[0,0,1]]
输出: 2
说明:已知学生0和学生1互为朋友,他们在一个朋友圈。 第2个学生自己在一个朋友圈。所以返回2。
示例2:
输入:
[[1,1,0],
[1,1,1],
[0,1,1]]
输出: 1
说明:已知学生0和学生1互为朋友,学生1和学生2互为朋友,所以学生0和学生2也是朋友,所以他们三个在一个朋友圈,返回1。
注意:
- N 在[1,200]的范围内。
- 对于所有学生,有Mii = 1。
- 如果有Mij = 1,则有Mji = 1。
2、思想
这道题DFS和BFS都可以解决,对于学生A,遍历他的所有朋友,再遍历他的朋友的朋友,这样就得到包含学生A的最大朋友圈。之后重复上面的这个操作就好了,即可得到不同的朋友圈个数。
3、代码实现
/**
解法一:利用广度优先搜索
*/
class Solution {
public int findCircleNum(int[][] M) {
boolean [] visited = new boolean[M.length];
int res = 0;
Queue<Integer> queue = new LinkedList<Integer>();
for(int i=0;i<M.length;i++){
if(!visited[i]){
queue = new LinkedList<Integer>();
queue.add(i);
BFS(M,queue,visited);
res++;
}
}
return res;
}
public void BFS(int[][] M,Queue<Integer> q,boolean[] visited){
while(!q.isEmpty()){
int a = q.poll();
for(int i=0;i<M.length;i++){
if(i!=a && M[a][i]==1 && !visited[i]){
q.add(i);
visited[i] = true;
}
}
}
}
}
/**
解法二:利用深度优先搜索
*/
class Solution {
public int findCircleNum(int[][] M) {
boolean [] visited = new boolean[M.length];
int res = 0;
for(int i=0;i<M.length;i++){
if(!visited[i]){
DFS(M,i,visited);
res++;
}
}
return res;
}
public void DFS(int [][] M,int k,boolean [] visited){
visited[k] = true;
for(int i=0;i<M.length;i++){
if(!visited[i] && M[k][i]==1){
visited[i] = true;
DFS(M,i,visited);
}
}
}
}