[复习]高斯消元 解方程组

题目描述
Tom 是个品学兼优的好学生,但由于智商问题,算术学得不是很好,尤其是在解方程这个方面。虽然他解决 2x=2 这样的方程游刃有余,但是对于下面这样的方程组就束手无策了。
x+y=3
x-y=1
于是他要你来帮忙。给定一个线性多元一次方程组,请你求出所有未知数的解。
保证在 int 范围内可以处理所有问题。

输入格式
输入文件的第一行一个数字 N(1≤N≤100),表示给定的方程组中的未知数的个数,同时也是这个方程组含有的方程个数。
第 2 到 N+1 行,每行 N+1 个数。每行的前 N 个数表示第 1 到 N 个未知数的系数。第 N+1 个数表示 N 个未知数乘以各自系数后再相加的和。

输出格式
输出一行,有 N 个整数,表示第 1 到 N 个未知数的值(整数解),而且数据保证有整数解。

样例数据
输入
2
1 1 3
1 -1 1
输出
2 1

分析: 高斯消元模板

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
#include<queue>
#include<set>
using namespace std;

const int maxn=110;
int n;
double f[maxn][maxn],ans[maxn];

void gauss()
{
    for(int i=1;i<=n;++i)//找到该维最大系数的(目的:提高精度)
    {
        int l=i;
        for(int j=l+1;j<=n;++j)
            if(fabs(f[l][i])<fabs(f[j][i]))//切记加fabs,我们需要的是“数值”大的
                l=j;

        if(l!=i)
            for(int j=i;j<=n+1;++j)
                swap(f[l][j],f[i][j]);

        for(int j=i+1;j<=n;++j)//消元
        {
            double tmp=f[j][i]/f[i][i];
            for(int k=i;k<=n+1;++k)
                f[j][k]=f[j][k]-f[i][k]*tmp;
        }
    }

    for(int i=n;i>=1;i--)//反推前面的答案
    {
        double tmp=f[i][n+1];
        for(int j=n;j>i;j--)
            tmp-=ans[j]*f[i][j];

        ans[i]=tmp/f[i][i];
    }
}

int main()
{
    freopen("lx.in","r",stdin);
    freopen("lx.out","w",stdout);

    scanf("%d",&n);
    for(int i=1;i<=n;++i)
        for(int j=1;j<=n+1;++j)
            scanf("%lf",&f[i][j]);

    gauss();
    for(int i=1;i<=n;++i)
        printf("%d ",int(ans[i]+0.5));//一直用的实型解方程,最后要输出整数答案,四舍五入

    return 0;
}

本题结。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值