题目描述
Tom 是个品学兼优的好学生,但由于智商问题,算术学得不是很好,尤其是在解方程这个方面。虽然他解决 2x=2 这样的方程游刃有余,但是对于下面这样的方程组就束手无策了。
x+y=3
x-y=1
于是他要你来帮忙。给定一个线性多元一次方程组,请你求出所有未知数的解。
保证在 int 范围内可以处理所有问题。
输入格式
输入文件的第一行一个数字 N(1≤N≤100),表示给定的方程组中的未知数的个数,同时也是这个方程组含有的方程个数。
第 2 到 N+1 行,每行 N+1 个数。每行的前 N 个数表示第 1 到 N 个未知数的系数。第 N+1 个数表示 N 个未知数乘以各自系数后再相加的和。
输出格式
输出一行,有 N 个整数,表示第 1 到 N 个未知数的值(整数解),而且数据保证有整数解。
样例数据
输入
2
1 1 3
1 -1 1
输出
2 1
分析: 高斯消元模板
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
#include<queue>
#include<set>
using namespace std;
const int maxn=110;
int n;
double f[maxn][maxn],ans[maxn];
void gauss()
{
for(int i=1;i<=n;++i)//找到该维最大系数的(目的:提高精度)
{
int l=i;
for(int j=l+1;j<=n;++j)
if(fabs(f[l][i])<fabs(f[j][i]))//切记加fabs,我们需要的是“数值”大的
l=j;
if(l!=i)
for(int j=i;j<=n+1;++j)
swap(f[l][j],f[i][j]);
for(int j=i+1;j<=n;++j)//消元
{
double tmp=f[j][i]/f[i][i];
for(int k=i;k<=n+1;++k)
f[j][k]=f[j][k]-f[i][k]*tmp;
}
}
for(int i=n;i>=1;i--)//反推前面的答案
{
double tmp=f[i][n+1];
for(int j=n;j>i;j--)
tmp-=ans[j]*f[i][j];
ans[i]=tmp/f[i][i];
}
}
int main()
{
freopen("lx.in","r",stdin);
freopen("lx.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;++i)
for(int j=1;j<=n+1;++j)
scanf("%lf",&f[i][j]);
gauss();
for(int i=1;i<=n;++i)
printf("%d ",int(ans[i]+0.5));//一直用的实型解方程,最后要输出整数答案,四舍五入
return 0;
}
本题结。