【题目大意】
给定一个长度为n的序列,每次可以选一个数做以下操作:
1.不断把这个数和它右边的数交换。
2.当它右边没有数或者右边的数比它大时,停止操作。
比如序列:1 4 3 2 5对4操作后序列为1 3 2 4 5。
求最少要几次操作,使得这个序列变成升序。
【输入格式】
第一行读入数据组数T。
每组数据第一行为n,第二行为n个数,从左到右描述给定序列。
【输出格式】
每组数据输出Case #x: y;x表示数据组数,y表示答案,即最少操作次数。
【样例输入】
2
5
5 4 3 2 1
5
5 1 2 3 4
【样例输出】
Case #1: 4
Case #2: 1
由题意可以知道,一个操作只能让一个数向右移,那么如果存在一对数a[ i ] > a[ j ],那么一定会对a[ i ]进行一次操作,所以可以用O(n)的复杂度统计这种数的个数,即从小到大枚举,维护最右边的已出现过的数。
考虑从小到大操作,当一个数不用移动时就不操作,否则就操作,这样,对于每个需要操作的数,只用进行一次操作,复杂度即为O(n)。
贴代码:
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e6+1;
int Read()
{
int i=0,f=1;
char c;
for(c=getchar();(c>'9'||c<'0')&&c!='-';c=getchar());
if(c=='-')
f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())
i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
int n,a[MAXN];
int main()
{
int T;
T=Read();
int sum=0;
while(T--)
{
sum++;
n=Read();
for(int i=1;i<=n;i++)
a[i]=Read();
int c=a[n],tot=0;
for(int i=n-1;i>0;i--)
if(a[i]>c)
tot++;
else
c=a[i];
printf("Case #%d: %d\n",sum,tot);
}
}