洛谷2607 骑士(基环树+树形DP)

传送门

【题目分析】

第一眼:咦这不简单树形DP吗?

第二眼:嗯?这不是有N条边吗?怎么就树形DP了?

第三眼:唉好像拆一条边不就N-1条边了吗?哎嘿嘿我太聪明了。。。。

噼里啪啦打完一交,WA完。。。。。。。一脸懵???才发现可能直接将整个图(以为保证连通)拆成两个联通块了。。。。。

然后画画图,发现肯定是拆环上的边,搞个并查集记录一下好了。

然后对于拆掉的边,直接分别强制两端点不选做一遍树形DP即可,取个较大值。考虑DP,每个点就两个选择:选和不选。如果不选,那么当前点最大值就为所有儿子的最大值之和;如果选,那么当前点最大值就为所有儿子的不选的最大值之和。

啪啪啪改完又交上去,对了三个点,一脸懵。

可能有多个联通块!多个!!!情况不考虑完真的难受

所以就可能要多次拆边,要开数组记录。每组都要做一遍,最后答案为各组最大值之和。

【代码~】

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN=1e6+10;
const int MAXM=2e6+10;

int n,cnt;
int s[MAXN],t[MAXN],tot;
LL ans;
int head[MAXN];
int nxt[MAXM],to[MAXM];
int a[MAXN];
LL dpfa[MAXN],dpson[MAXN];
int fa[MAXN];

int Read(){
	int i=0,f=1;
	char c;
	for(c=getchar();(c>'9'||c<'0')&&c!='-';c=getchar());
	if(c=='-')
	  f=-1,c=getchar();
	for(;c>='0'&&c<='9';c=getchar())
	  i=(i<<3)+(i<<1)+c-'0';
	return i*f;
}

int find(int x){
	if(x==fa[x])
	  return x;
	return fa[x]=find(fa[x]);
}

void add(int x,int y){
	nxt[cnt]=head[x];
	head[x]=cnt;
	to[cnt]=y;
	cnt++;
}

void dfs(int u,int f){
	dpfa[u]=a[u],dpson[u]=0;
	for(int i=head[u];i!=-1;i=nxt[i]){
		int v=to[i];
		if(v==f)
		  continue;
		dfs(v,u);
		dpson[u]+=max(dpson[v],dpfa[v]);
		dpfa[u]+=dpson[v];
	}
}

int main(){
	memset(head,-1,sizeof(head));
	n=Read();
	for(int i=1;i<=n;++i){
		fa[i]=i;
	}
	for(int i=1;i<=n;++i){
		a[i]=Read();
		int y=Read();
		if(find(i)==find(y)){
			s[++tot]=i;
			t[tot]=y;
		}
		else{
			add(i,y),add(y,i);
			fa[fa[i]]=fa[y];
		}
	}
	LL tt;
	for(int i=1;i<=tot;++i){
		dfs(s[i],-1);
		tt=dpson[s[i]];
		dfs(t[i],-1);
		ans+=max(tt,dpson[t[i]]);
	}
	cout<<ans;
	return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值