传送门
【题目分析】
氵谷第二道黑题唉qwq
思想很巧妙,对于一个数x,将区间[l,r]中比他大的数赋为1,比他小的数赋为-1,那么判断一个数是否大于等于中位数就等价于了区间和是否大于等于0。
所以这个性质就可以应用到二分答案上,每次check(mid)的时候直接判区间和是否大于等于0。
然后考虑如何维护这个区间和,首先发现可以将所有的1和-1的主席树建出来,因为后一个主席树只会在前一个的基础上将一个位置变为-1。
对于题目的限制[a,b],[c,d],发现最大中位数对应的区间和是由[a,b]最大后缀和+[b+1,c-1](如果b+1<=c-1的话)区间和+[c,d]最大前缀和,所以直接记录这个值,如果>=0则说明中位数>=mid,记录l,向上调整,否则向下调整。
【代码~】
#include<bits/stdc++.h>
using namespace std;
const int MAXN=2e4+10;
int n,m,q;
int s[4];
int rt[MAXN],last,tot,ans;
struct data{
int val,id;
friend inline bool operator<(const data &a,const data &b){
return a.val<b.val;
}
}a[MAXN];
struct Tree{
int l,r;
int lsum,rsum,sum;
friend inline Tree operator+(const Tree &a,const Tree &b){
Tree c;
c.sum=a.sum+b.sum;
c.lsum=max(a.lsum,a.sum+b.lsum);
c.rsum=max(b.rsum,b.sum+a.rsum);
return c;
}
}tr[MAXN*40];
int Read(){
int i=0,f=1;
char c;
for(c=getchar();(c>'9'||c<'0')&&c!='-';c=getchar());
if(c=='-')
f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())
i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
void sc(int x){
if(x>=10)
sc(x/10);
putchar(x%10^48);
}
void push_up(int root){
tr[root].sum=tr[tr[root].l].sum+tr[tr[root].r].sum;
tr[root].lsum=max(tr[tr[root].l].lsum,tr[tr[root].l].sum+tr[tr[root].r].lsum);
tr[root].rsum=max(tr[tr[root].r].rsum,tr[tr[root].r].sum+tr[tr[root].l].rsum);
}
void build(int &root,int l,int r){
root=++tot;
if(l==r){
tr[root].lsum=tr[root].rsum=tr[root].sum=1;
return ;
}
int mid=l+r>>1;
build(tr[root].l,l,mid);
build(tr[root].r,mid+1,r);
push_up(root);
}
void insert(int &root,int las,int l,int r,int x){
root=++tot;
tr[root]=tr[las];
if(l==r){
tr[root].lsum=tr[root].rsum=tr[root].sum=-1;
return;
}
int mid=l+r>>1;
if(x<=mid)
insert(tr[root].l,tr[las].l,l,mid,x);
else
insert(tr[root].r,tr[las].r,mid+1,r,x);
push_up(root);
}
Tree query(int root,int l,int r,int L,int R){
if(L<=l&&r<=R)
return tr[root];
int mid=l+r>>1;
if(R<=mid)
return query(tr[root].l,l,mid,L,R);
else{
if(L>mid)
return query(tr[root].r,mid+1,r,L,R);
else
return query(tr[root].l,l,mid,L,mid)+query(tr[root].r,mid+1,r,mid+1,R);
}
}
int check(int x){
int ret=0;
if(s[1]+1<=s[2]-1){
ret+=query(rt[x],0,n-1,s[1]+1,s[2]-1).sum;
}
ret+=query(rt[x],0,n-1,s[0],s[1]).rsum;
ret+=query(rt[x],0,n-1,s[2],s[3]).lsum;
return ret>=0;
}
int main(){
n=Read();
for(int i=0;i<n;++i){
a[i].val=Read();
a[i].id=i;
}
sort(a,a+n);
build(rt[0],0,n-1);
for(int i=0;i<n-1;++i){
insert(rt[i+1],rt[i],0,n-1,a[i].id);
}
q=Read();
int l,r,mid;
while(q--){
for(int i=0;i<4;++i){
s[i]=Read();
s[i]=(s[i]+last)%n;
}
sort(s,s+4);
l=0,r=n-1;
while(l<=r){
mid=l+r>>1;
if(check(mid))
ans=mid,l=mid+1;
else
r=mid-1;
}
last=a[ans].val;
sc(last),puts("");
}
return 0;
}