【题目描述】
给出一个长为n的序列
编号 | 输入格式 | 含义 |
---|---|---|
1 | 1 l r | 求区间 [l,r]的和 |
2 | 2 l r | 求区间[l,r]的最大值 |
3 | 3 l r | 求区间 [l,r]的最小值 |
4 | 4 l r x | 将区间 [l,r]内的所有数加上 x |
5 | 5 i x | 将第i个数按位异或 x |
6 | 6 l r | 求区间[l,r]内所有数的平均值(保留两位小数) |
7 | 7 l r | 将区间 [l,r]内的所有数都变为原来的相反数 |
8 | 8 l r x | 将区间[l,r]内的所有数赋值为 x |
9 | 9 l r | 求区间 [l,r]内所有数的平方和 |
对于操作 1 和 9,输出要对 1e9+7取模。
【题目分析】
码码码码码码农题。
1-4操作都比较常规,5操作直接单点异或,6操作区间求和除以长度,7打取反标记,8打覆盖标记,9需要在线段树内维护。
标记我是先覆盖再取反再加,覆盖加和取反的标记要清零。
然后就是细节,比如区间加平方和的修改要在区间和之前,详见代码。
【代码~】
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAXN=1e5+10;
const LL MOD=1e9+7;
LL n,q,cz,x,y;
LL a[MAXN];
struct Tree{
LL l,r,len;
LL sum,square,add;
LL maxx,minn;
LL rev;
LL cov,cnum;
}tr[MAXN<<4];
LL add(LL x,LL y){
return (x+y>=MOD)?(x+y-MOD):(x+y);
}
LL Read(){
LL i=0,f=1;
char c;
for(c=getchar();(c>'9'||c<'0')&&c!='-';c=getchar());
if(c=='-')
f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())
i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
void push_up(LL root){
tr[root].sum=(tr[root<<1].sum+tr[root<<1|1].sum);
tr[root].square=(tr[root<<1].square+tr[root<<1|1].square)%MOD;
tr[root].maxx=max(tr[root<<1].maxx,tr[root<<1|1].maxx);
tr[root].minn=min(tr[root<<1].minn,tr[root<<1|1].minn);
}
void push_add(LL root,LL key){
tr[root].add=(tr[root].add+key);
tr[root].square=(tr[root].square+tr[root].len*key%MOD*key%MOD+2*tr[root].sum*key%MOD+MOD)%MOD;
tr[root].sum+=tr[root].len*key;
tr[root].maxx+=key;
tr[root].minn+=key;
}
void push_rev(LL root){
tr[root].rev^=1;
tr[root].add=-tr[root].add;
tr[root].sum=-tr[root].sum;
swap(tr[root].maxx,tr[root].minn);
tr[root].maxx=-tr[root].maxx;
tr[root].minn=-tr[root].minn;
}
void push_cov(LL root,LL key){
tr[root].cov=1;
tr[root].cnum=key;
tr[root].sum=tr[root].len*key;
tr[root].square=tr[root].len*key%MOD*key%MOD;
tr[root].maxx=tr[root].minn=key;
tr[root].add=tr[root].rev=0;
}
void push_down(LL root){
if(tr[root].cov){
push_cov(root<<1,tr[root].cnum);
push_cov(root<<1|1,tr[root].cnum);
tr[root].cov=0;
}
if(tr[root].rev){
push_rev(root<<1);
push_rev(root<<1|1);
tr[root].rev=0;
}
if(tr[root].add){
push_add(root<<1,tr[root].add);
push_add(root<<1|1,tr[root].add);
tr[root].add=0;
}
}
void build(LL root,LL l,LL r){
tr[root].l=l,tr[root].r=r;
tr[root].len=tr[root].r-tr[root].l+1;
if(l==r){
tr[root].sum=tr[root].maxx=tr[root].minn=a[l];
tr[root].square=a[l]*a[l];
return ;
}
LL mid=l+r>>1;
build(root<<1,l,mid);
build(root<<1|1,mid+1,r);
push_up(root);
}
void update(LL root,LL l,LL r,LL L,LL R,LL type,LL key){
if(l>R||r<L)
return ;
if(L<=l&&r<=R){
if(type==1){ push_add(root,key); return ;}
if(type==2){ push_rev(root); return ;}
if(type==3){ push_cov(root,key); return ;}
}
push_down(root);
LL mid=l+r>>1;
if(R<=mid)
update(root<<1,l,mid,L,R,type,key);
else{
if(L>mid)
update(root<<1|1,mid+1,r,L,R,type,key);
else
update(root<<1,l,mid,L,mid,type,key),update(root<<1|1,mid+1,r,mid+1,R,type,key);
}
push_up(root);
}
void update2(LL root,LL l,LL r,LL id,LL key){
if(l==r){
tr[root].sum^=key;
tr[root].maxx^=key;
tr[root].minn^=key;
tr[root].square=tr[root].sum*tr[root].sum%MOD;
return ;
}
push_down(root);
int mid=l+r>>1;
if(id<=mid)
update2(root<<1,l,mid,id,key);
else
update2(root<<1|1,mid+1,r,id,key);
push_up(root);
}
LL query(LL root,LL l,LL r,LL L,LL R,LL type){
if(l>R||r<L){
if(type==1||type==4)
return 0;
if(type==2)
return -9223372036854775807;
if(type==3)
return 9223372036854775807;
}
if(L<=l&&r<=R){
if(type==1)return tr[root].sum;
if(type==2)return tr[root].maxx;
if(type==3)return tr[root].minn;
if(type==4)return tr[root].square;
}
LL mid=l+r>>1;
push_down(root);
if(R<=mid)
return query(root<<1,l,mid,L,R,type);
else{
if(L>mid)
return query(root<<1|1,mid+1,r,L,R,type);
else{
if(type==1) return (query(root<<1,l,mid,L,mid,type)+query(root<<1|1,mid+1,r,mid+1,R,type));
if(type==2) return max(query(root<<1,l,mid,L,mid,type),query(root<<1|1,mid+1,r,mid+1,R,type));
if(type==3) return min(query(root<<1,l,mid,L,mid,type),query(root<<1|1,mid+1,r,mid+1,R,type));
if(type==4) return (query(root<<1,l,mid,L,mid,type)+query(root<<1|1,mid+1,r,mid+1,R,type))%MOD;
}
}
}
int main(){
// freopen("array1.in","r",stdin);
// freopen("array1.out","w",stdout);
n=Read(),q=Read();
for(LL i=1;i<=n;++i)
a[i]=Read();
build(1,1,n);
while(q--){
cz=Read(),x=Read(),y=Read();
if(cz==1){cout<<(query(1,1,n,x,y,1)%MOD+MOD)%MOD<<'\n';}
if(cz==2){cout<<query(1,1,n,x,y,2)<<'\n';}
if(cz==3){cout<<query(1,1,n,x,y,3)<<'\n';}
if(cz==4){LL k=Read();update(1,1,n,x,y,1,k);}
if(cz==5){update2(1,1,n,x,y);}
if(cz==6){LL sum=query(1,1,n,x,y,1);double aver=(double)(sum)/(double)(y-x+1);printf("%.2lf\n",aver);}
if(cz==7){update(1,1,n,x,y,2,0);}
if(cz==8){LL k=Read();update(1,1,n,x,y,3,k);}
if(cz==9){cout<<query(1,1,n,x,y,4)<<'\n';}
}
return 0;
}