校内OJ3755 数据结构题(线段树)

【题目描述】

给出一个长为n的序列

编号输入格式含义
11 l r求区间 [l,r]的和
22 l r求区间[l,r]的最大值
33 l r求区间 [l,r]的最小值
44 l r x将区间 [l,r]内的所有数加上 x
55 i x将第i个数按位异或 x
66 l r求区间[l,r]内所有数的平均值(保留两位小数)
77 l r将区间 [l,r]内的所有数都变为原来的相反数
88 l r x将区间[l,r]内的所有数赋值为 x
99 l r求区间 [l,r]内所有数的平方和

对于操作 1 和 9,输出要对 1e9+7取模。

【题目分析】

码码码码码码农题。

1-4操作都比较常规,5操作直接单点异或,6操作区间求和除以长度,7打取反标记,8打覆盖标记,9需要在线段树内维护。

标记我是先覆盖再取反再加,覆盖加和取反的标记要清零。

然后就是细节,比如区间加平方和的修改要在区间和之前,详见代码。

【代码~】

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAXN=1e5+10;
const LL MOD=1e9+7;

LL n,q,cz,x,y;
LL a[MAXN];
struct Tree{
	LL l,r,len;
	LL sum,square,add;
	LL maxx,minn;
	LL rev;
	LL cov,cnum;
}tr[MAXN<<4];

LL add(LL x,LL y){
	return (x+y>=MOD)?(x+y-MOD):(x+y);
}

LL Read(){
	LL i=0,f=1;
	char c;
	for(c=getchar();(c>'9'||c<'0')&&c!='-';c=getchar());
	if(c=='-')
	  f=-1,c=getchar();
	for(;c>='0'&&c<='9';c=getchar())
	  i=(i<<3)+(i<<1)+c-'0';
	return i*f; 
}

void push_up(LL root){
	tr[root].sum=(tr[root<<1].sum+tr[root<<1|1].sum);
	tr[root].square=(tr[root<<1].square+tr[root<<1|1].square)%MOD;
	tr[root].maxx=max(tr[root<<1].maxx,tr[root<<1|1].maxx);
	tr[root].minn=min(tr[root<<1].minn,tr[root<<1|1].minn);
}

void push_add(LL root,LL key){
	tr[root].add=(tr[root].add+key);
	tr[root].square=(tr[root].square+tr[root].len*key%MOD*key%MOD+2*tr[root].sum*key%MOD+MOD)%MOD;
	tr[root].sum+=tr[root].len*key;
	tr[root].maxx+=key;
	tr[root].minn+=key;
}

void push_rev(LL root){
	tr[root].rev^=1;
	tr[root].add=-tr[root].add;
	tr[root].sum=-tr[root].sum;
	swap(tr[root].maxx,tr[root].minn);
	tr[root].maxx=-tr[root].maxx;
	tr[root].minn=-tr[root].minn;
}

void push_cov(LL root,LL key){
	tr[root].cov=1;
	tr[root].cnum=key;
	tr[root].sum=tr[root].len*key;
	tr[root].square=tr[root].len*key%MOD*key%MOD;
	tr[root].maxx=tr[root].minn=key;
	tr[root].add=tr[root].rev=0;
}

void push_down(LL root){
	if(tr[root].cov){
		push_cov(root<<1,tr[root].cnum);
		push_cov(root<<1|1,tr[root].cnum);
		tr[root].cov=0;
	}
	if(tr[root].rev){
		push_rev(root<<1);
		push_rev(root<<1|1);
		tr[root].rev=0;
	}
	if(tr[root].add){
		push_add(root<<1,tr[root].add);
		push_add(root<<1|1,tr[root].add);
		tr[root].add=0;
	}
}

void build(LL root,LL l,LL r){
	tr[root].l=l,tr[root].r=r;
	tr[root].len=tr[root].r-tr[root].l+1;
	if(l==r){
		tr[root].sum=tr[root].maxx=tr[root].minn=a[l];
		tr[root].square=a[l]*a[l];
		return ;
	}
	LL mid=l+r>>1;
	build(root<<1,l,mid);
	build(root<<1|1,mid+1,r);
	push_up(root);
}

void update(LL root,LL l,LL r,LL L,LL R,LL type,LL key){
	if(l>R||r<L)
	  return ;
	
	if(L<=l&&r<=R){
		if(type==1){  push_add(root,key);  return ;}
		if(type==2){  push_rev(root);  return ;}
		if(type==3){  push_cov(root,key);  return ;}
	}
	push_down(root);
	LL mid=l+r>>1;
	if(R<=mid)
	  update(root<<1,l,mid,L,R,type,key);
	else{
		if(L>mid)
		  update(root<<1|1,mid+1,r,L,R,type,key);
		else
		  update(root<<1,l,mid,L,mid,type,key),update(root<<1|1,mid+1,r,mid+1,R,type,key);
	}
	push_up(root);
}

void update2(LL root,LL l,LL r,LL id,LL key){
	if(l==r){
		tr[root].sum^=key;
		tr[root].maxx^=key;
		tr[root].minn^=key;
		tr[root].square=tr[root].sum*tr[root].sum%MOD;
		return ;
	}
	push_down(root);
	int mid=l+r>>1;
	if(id<=mid)
	  update2(root<<1,l,mid,id,key);
	else
	  update2(root<<1|1,mid+1,r,id,key);
	push_up(root);
}

LL query(LL root,LL l,LL r,LL L,LL R,LL type){
	if(l>R||r<L){
		if(type==1||type==4)
		  return 0;
		if(type==2)
		  return -9223372036854775807;
		if(type==3)
		  return 9223372036854775807;
	}
	
	if(L<=l&&r<=R){
		if(type==1)return tr[root].sum;
		if(type==2)return tr[root].maxx;
		if(type==3)return tr[root].minn;
		if(type==4)return tr[root].square;
	}
	LL mid=l+r>>1;
	push_down(root);
	if(R<=mid)
	  return query(root<<1,l,mid,L,R,type);
	else{
		if(L>mid)
		  return query(root<<1|1,mid+1,r,L,R,type);
		else{
			if(type==1)  return (query(root<<1,l,mid,L,mid,type)+query(root<<1|1,mid+1,r,mid+1,R,type));
			if(type==2)  return max(query(root<<1,l,mid,L,mid,type),query(root<<1|1,mid+1,r,mid+1,R,type));
			if(type==3)  return min(query(root<<1,l,mid,L,mid,type),query(root<<1|1,mid+1,r,mid+1,R,type));
			if(type==4)  return (query(root<<1,l,mid,L,mid,type)+query(root<<1|1,mid+1,r,mid+1,R,type))%MOD;
		}
	}
}

int main(){
//	freopen("array1.in","r",stdin);
//	freopen("array1.out","w",stdout);
	n=Read(),q=Read();
	for(LL i=1;i<=n;++i)
	  a[i]=Read();
	build(1,1,n);
	while(q--){
		cz=Read(),x=Read(),y=Read();
		if(cz==1){cout<<(query(1,1,n,x,y,1)%MOD+MOD)%MOD<<'\n';}
		if(cz==2){cout<<query(1,1,n,x,y,2)<<'\n';}
		if(cz==3){cout<<query(1,1,n,x,y,3)<<'\n';}
		if(cz==4){LL k=Read();update(1,1,n,x,y,1,k);}
		if(cz==5){update2(1,1,n,x,y);}
		if(cz==6){LL sum=query(1,1,n,x,y,1);double aver=(double)(sum)/(double)(y-x+1);printf("%.2lf\n",aver);}
		if(cz==7){update(1,1,n,x,y,2,0);}
		if(cz==8){LL k=Read();update(1,1,n,x,y,3,k);}
		if(cz==9){cout<<query(1,1,n,x,y,4)<<'\n';}
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值