限流的依赖
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>33.0.0-jre</version>
</dependency>
@Configuration
@Slf4j
public class CustomExecutorConfig {
/**
* 自定义线程池
*
* @return
*/
@Bean("customExecutor")
public Executor getAsyncExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
//此方法返回可用处理器的虚拟机的最大数量; 不小于1
int core = Runtime.getRuntime().availableProcessors();
//设置核心线程数
executor.setCorePoolSize(100);
//设置最大线程数
executor.setMaxPoolSize(150);
//除核心线程外的线程存活时间
executor.setKeepAliveSeconds(30);
//如果传入值大于0,底层队列使用的是LinkedBlockingQueue,否则默认使用SynchronousQueue
executor.setQueueCapacity(200);
//线程名称前缀
executor.setThreadNamePrefix("my-executor-");
//设置拒绝策略
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
executor.initialize();
return executor;
}
}
@Resource(name = "customExecutor")
private Executor executor;
//如果需要控制速率,限流,每秒100个线程处理
private final RateLimiter rateLimiter = RateLimiter.create(100.0);
//dealMethod 为执行的方法
//list为源数据
CompletableFuture<String>[] completableFutures = list.stream().map(s->{
return CompletableFuture.supplyAsync(() -> {
//如果并发处理时需要控制限流
rateLimiter.acquire();
return dealMethod(s.getText());}, executor);
}).toArray(CompletableFuture[]::new);
// 等待所有任务执行完
CompletableFuture.allOf(completableFutures).join();
for (CompletableFuture<String> completableFuture : completableFutures) {
String str= completableFuture.get();
//doString...................
}
test代码
import com.google.common.util.concurrent.RateLimiter;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import javax.annotation.Resource;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.Executor;
@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest(classes = Application.class)
public class RateLimitedTaskProcessor {
private static final int THREAD_POOL_SIZE = 20; // 线程池大小
private static final int RATE_LIMIT = 10; // 每秒最多处理的任务数
@Resource(name = "customExecutor")
private Executor executor;
@Test
public void test() {
// 创建一个线程池
// ExecutorService executor = Executors.newFixedThreadPool(THREAD_POOL_SIZE);
// 创建一个RateLimiter,每秒最多处理10个任务
RateLimiter rateLimiter = RateLimiter.create(RATE_LIMIT);
// 模拟要处理的任务列表
List<CompletableFuture<Void>> futures = new ArrayList<>();
List<Integer> list=new ArrayList<>();
for (int i = 1; i <= 50; i++) { // 假设有50个任务需要处理
list.add(i);
}
CompletableFuture<Void>[] completableFutures = list.stream().map(s->{
return CompletableFuture.runAsync(() ->{
rateLimiter.acquire();
processTask(s);
}
, executor);
}).toArray(CompletableFuture[]::new);
CompletableFuture.allOf(completableFutures).join();
// 关闭线程池
// executor.shutdown();
System.out.println("All tasks completed.");
}
private static void processTask(int taskNumber) {
//获取当前时间 格式为yyyyMMdd:HHmmss
String time = LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"));
System.out.println("时间为:"+time+",Processing task " + taskNumber + " by " + Thread.currentThread().getName());
// 模拟任务处理时间
try {
Thread.sleep(100);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}