题目描述:
一年一 度的宇宙超级运动会在宇宙英雄体育场隆重举行。X星人为这场运动会准备了很长时间,他大显身手的时刻终于到了!为了保持良好的竞技状态和充沛的体能,X星人准备了N种不同的能量包。 虽然每种能量包都有无限个,但是因为同种能量包使用太多会带来副作用,因此同样的能量包不能同时使用超过两个,也就是说最多同时可以使用两个相同的能量包。每种能量包都有一个重量值和能量值。由于这些能量包的特殊性,必须要完整地使用一个能量包才能够发挥功效,否则将失去对应的能量值。考虑到竞赛的公平性, 竞赛组委会规定每个人赛前补充的能阿量包的总重量不能超过W。现在需要你编写一个程序计算出X星人能够拥有的最大能量值是多少?
单组输入。
第1行包含两个空格隔开正整数N和W,其中N<=10^3, W<=10^3。
第2行到第N+1行,每行包含两个正整数,分别表示每种能量包的重量和能量值,两个
正整数之间用空格隔开。每种能量包的重量和能量值都是小于等于100的正整数。
使用动态规划,可参考01背包问题。
#include<iostream>
#include<vector>
#include<queue>
#include<cmath>
#include<algorithm>
using namespace std;
int main(){
int N,W;
cin>>N>>W;
vector<vector<int>>dp/*(2*N,vector<int>(W+1, 0))*/;
for (int i = 0; i <= 2*N; i++)//动态规划表
{
vector<int> buff(W+1, 0);
dp.push_back(buff);
}
vector<int>BW,BP;
BW.push_back(0);
BP.push_back(0);
for(int i=0;i<N;i++){
int beg_W,beg_power;
cin>>beg_W>>beg_power;
BW.push_back(beg_W);//每个包只能用两次限制转化
BW.push_back(beg_W);
BP.push_back(beg_power);
BP.push_back(beg_power);
}
//dp[i][j]=max(dp[i-1][j], dp[i-1][j-BW[i]]+BP[i-1])
for(int i=1; i<=2*N; i++){
for(int j=1; j<=W; j++){
if (j >= BW[i])
{
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - BW[i]] + BP[i]);
}
else
{
dp[i][j] = dp[i - 1][j];
}
}
}
int ans = dp[2*N][W];
cout << ans << endl;
return 0;
}