老师给韩梅梅和李雷分糖果,每袋糖果中的糖果数量不完全一样,一袋糖果只能分给一个人且所有糖果必须全部分完,两个人分到的糖果数量必须相同。请返回两个人分到的糖果数量,如果无法平均分配返回-1。
解答要求
时间限制: C/C++ 100m,其他语言: 200m
内存限制: C/C++ 25MB,其他语言: 512MB
输入
第一行输入为糖果的袋数,取值范围为[1,100]。
第二行输入为一个整型数组,描述每袋糖果中的糖果数量,每个元素的取值范围为[1,100]。
输出
第一行为每人平均分配到的糖果数,如果不能平均分配则为-1。
第二行、第三行为李雷和韩梅梅分配到的每袋果中的糖果数,顺序不限。
思路:还是动态规划类型问题,这里主要是要记录下最优化方法中使用的哪一袋糖果,针对这个问题使用回溯法,去查找dp中的记录的值。(关键要理解01背包问题中记录dp二维数组)
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
void find(vector<vector<int>>dp,vector<int>suger_nums,vector<int>& flag,int i,int j){//回溯法寻找达到target时,选择的是哪袋糖果
if(i==0)return;
if(dp[i][j] == dp[i-1][j]){//未选择当前糖果袋,记为0
flag[i]=0;
find(dp,suger_nums,flag,i-1,j);
}else if(dp[i][j] == dp[i - 1][j - suger_nums[i]] + suger_nums[i]){//选择此袋糖果,记为1
flag[i]=1;
find(dp,suger_nums,flag,i-1,j-suger_nums[i]);
}
}
int main(){
int N,nums;
int sum=0;
vector<int>suger_nums;
cin>>N;
suger_nums.push_back(0);
while(cin>>nums){
sum += nums;//记录糖果总数
suger_nums.push_back(nums);
if(cin.get()=='\n')break;
}
vector<int>flag(N+1,0);
if(N==1||sum%2!=0){//糖果袋数为1,无法分配;糖果总数为奇数,无法均分
cout<<-1<<endl;
return 0;
}
int target=sum/2;//单个人所需糖果数量——>目标值
vector<vector<int>>dp;
for (int i = 0; i <= N; i++)//动态规划表
{
vector<int> buff(target+1, 0);
dp.push_back(buff);
}
//dp[i][j]=max(dp[i-1][j], dp[i-1][j-suger_nums[i]]+suger_nums[i])->状态转移方程
for(int i=1; i<=N; i++){
for(int j=1; j<=target; j++){
if (j >= suger_nums[i])
{
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - suger_nums[i]] + suger_nums[i]);
}
else
{
dp[i][j] = dp[i - 1][j];
}
}
}
int ans = dp[N][target];//此时dp[N][target]为最接近目标值的最优方案
if(ans == target){//当最优方案等于目标值,则可以均分
cout<<ans<<endl;
find(dp,suger_nums,flag,N,target);
for(int k=0; k<suger_nums.size();k++){//输出其中一人获得的糖果
if(flag[k]==1)cout<<suger_nums[k]<<' ';
}
cout<<endl;
for(int k=0; k<suger_nums.size();k++){//输出另一人获得的糖果
if(flag[k]==0&&k!=0)cout<<suger_nums[k]<<' ';
}
}else{//无法均分
cout<<-1<<endl;
}
return 0;
}