建议大家在入职前背调公司,现在公司坑很多,腾出来的社招岗位多数是前人留下的坑!...

背调一般是公司查员工,但反过来是否可行呢?

一位网友建议大家入职新公司前也要对公司进行详细背调,不要稀里糊涂就入职。现在公司坑很多,一般腾出来社招的hc多数都是前人离职后留下的坑,大家要好好想想,前人离职一定是因为有对公司不满的地方。

c7994d86519d8de56fe680d465fc2417.jpeg

许多人表示赞同,一定要背调,不然进去了就知道有多难受。

5570c4af6abe44a1cacf15e654c3fcec.jpeg

有人说,自己就是没有做充分背调,入了坑,待了几个月就走了。

29bbcb5023676280be09d6cd66822cbc.jpeg

有人分享了自己求职时因为没提前背调而被坑的经历:

fff83da981cac9ae82dce9aca0dd35d4.jpeg

有人说,应该要求对方提供近三年直属领导手下离职的1到3位前同事的联系方式,以此进行背调。

34d569f2e2894b5c4a70f8a338c6fb5f.jpeg

有人说,虽然同意楼主的说法,但坑防不胜防,背调再详细也会被踩。

69a666a9af2c4395b1d77528b8e5738d.jpeg

也有人说,公司招人肯定是有坑要填,好坑谁会离开?正因为有坑才招人,你才有机会入职。

96279ea05d1957408a85ed2d39fa32ce.jpeg45999bf3e00c2c18d9d24691a9a44e83.jpeg01c44d972d1a6b8de77d31a77d34ac6f.jpeg

有人说,离职原因有很多,有人不喜欢领导所以走了,但不代表这个领导不适合你,所以去尝试了才知道适不适合自己。

cce8e597b44fc521b1c29f0119e1a769.jpeg

有人说,背调成本很高,应聘个大头兵岗位而已,至于吗?

fa103ac48c48c04d1b8dca1b04f73d44.jpege894c104b63a3c062d852e3397d294b7.jpeg

还有人说,说得很好,但没有考虑打工人身不由己,虽然大家向往自由,但真能活自由的没有几个。

4f6b6fab182085129495a1aae25df217.jpeg

有人说,目前这个形式能有份工作就不错了,容不得挑三拣四。除非你年轻,学历好,是市场上的稀缺人才,那才可能提这个要求。

3fc3a235c306b7c83bb47f64d9b3e60e.jpege857016fa5b4ed4c6fb7af4f91ceb4a1.jpeg

求职是双向的,公司背调求职者,求职者当然也可以背调公司。一旦不小心掉进坑里,不仅浪费了自己的时间精力,还会弄花自己的简历。

作为打工人,可以通过以下几种方法来进行背调:

1.利用企查查、天眼查、所在地工商局网站等网站查询公司相关信息。

2.面试时顺便了解和感受公司内部工作环境、员工工作状态、公司对待求职者的态度是否尊重等。

3.如果在公司有熟人,可以私下打听一下应聘的岗位情况、领导性格,看看跟自己是否契合。

4.去一些职场人聚集的论坛网站搜索员工对该公司的评价,或者直接向大家发问,这种匿名论坛上往往能得到许多真实的反馈。

总之,再着急找工作也别闭眼入坑,谨慎一点没有坏处,毕竟坑是公司的,但掉进去疼的可是自己。

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出四个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值