14、与S波段雷达共享频谱的蜂窝系统载波聚合资源分配

与S波段雷达共享频谱的蜂窝系统载波聚合资源分配

1. 背景与目标

随着商业无线运营商对频谱的需求不断增加,联邦机构开始愿意与商业用户共享频谱。3550 - 3650 MHz频段目前用于军事雷达操作,根据相关报告和建议,该频段被确定用于军事雷达和通信系统之间的频谱共享,这对LTE - Advanced等商业蜂窝系统非常有利。然而,雷达对蜂窝系统的干扰是商业运营商关注的问题,因此需要创新方法来实现雷达和蜂窝系统之间的频谱共享。

本文的目标是找到一种资源分配与载波聚合问题的最优解决方案,将LTE - Advanced基站/eNodeB和可用的MIMO雷达资源最优地分配给蜂窝覆盖区域内订阅服务的用户。

2. 系统模型

考虑一个共址MIMO雷达和一个MIMO LTE通信系统,它们是3550 - 3650 MHz频段的主要用户。具体参数如下:
|系统|参数|详情|
| ---- | ---- | ---- |
|MIMO雷达|发射天线数量|$M_T$|
||接收天线数量|$M_R$|
|LTE通信系统|基站数量|$N_{BS}$|
||每个基站发射天线数量|$N_{BS}^T$|
||每个基站接收天线数量|$N_{BS}^R$|
||第i个基站支持的用户设备数量|$K_{UE}^i$|
||每个用户设备发射天线数量|$N_{UE}^T$|
||每个用户设备接收天线数量|$N_{UE}^R$|

共址雷达的天线间距约为载波波长的一半,具有更好的目标参数识别能力和空间分辨率。MIMO雷达在照射目标时将其信号投影到干扰信道的零空间,以避免对LTE基站的干扰。

内容概要:本文详细介绍了一个基于布谷鸟搜索算法(CS)注意力机制长短期记忆网络(ALSTM)融合的风电功率预测项目实例,旨在通过智能优化深度学习相结合的方法提升预测精度。项目涵盖了从数据预处理、特征工程、CS算法优化ALSTM超参数、注意力机制增强模型对关键时序特征的关注能力,到模型训练、预测及结果可视化的完整流程。文中还提供了MATLAB代码示例,包括数据填补、归一化、滑动窗口构建样本、CS算法实现、ALSTM建模训练、预测反归一化、误差评估及注意力权重可视化等关键环节,展示了CS-ALSTM模型在应对风电数据高波动性、非线性、噪声干扰和长序列依赖等问题上的有效性。; 适合人群:具备一定机器学习深度学习基础,熟悉MATLAB编程,从事新能源预测、智能电网、时间序列分析等相关领域的研究人员或工程师,尤其是工作1-3年希望提升模型优化实战能力的技术人员; 使用场景及目标:①应用于风电场功率预测,提升预测精度以优化电网调度能源消纳;②研究智能优化算法(如CS)深度学习模型(如ALSTM)的融合机制;③开展太阳能、负荷等其他时序预测任务的模型开发参数自动优化; 阅读建议:此资源以实际项目为导向,强调算法实现工程应用结合,建议读者在理解模型架构基础上,动手复现代码并调试参数,重点关注CS算法的全局寻优过程注意力机制的可视化分析,深入掌握模型优化逻辑预测性能提升路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值