3、Tableau基础入门与版本探索

Tableau基础入门与版本探索

1. 工作簿和工作表的使用要点

在考虑工作簿和工作表的使用时,有以下要点:
- 一个Tableau工作表可能包含一个带有多个货架、卡片、图例和分析窗格的单一视图,这些元素作为单一侧边栏的一部分包含在单页上,用于讲述一个故事。
- 当向工作簿中添加多个工作表页面时,可以生成一个仪表板,它是来自多个工作表的视图集合。
- 在工作簿中创建多个工作表时,实际上是在编排一个故事,即一系列工作表按顺序呈现,融合信息形成完整画面。
- 在Tableau Desktop(尤其是)和Tableau Cloud中,可以通过将字段拖放到Tableau货架上来组合数据视图,这些货架是工作表的一部分,有助于创建演示文稿。

2. 开启Tableau之旅

了解了Tableau的基本术语后,就可以着手安装Tableau了。有人可能会疑惑,Tableau不是有基于云的实例吗?没错,Tableau并非单一应用程序,而是一套应用程序。像Tableau Desktop和Tableau Prep Builder等应用程序可安装在桌面(支持Windows和Mac OS),之后用户可以选择将生成的数据发布到Tableau Cloud或Tableau Server。

2.1 理解安装先决条件

很多用户认为Tableau是基于云的,因为其所有者Salesforce是软件即服务(SaaS)平台。虽然Tableau Cloud确实是用户Tableau文件的最终归宿,但由于云计算能力可能无法满足Tableau中某些数据活动的速度和规模要求,很多操作仍需在桌面进行。例如,创建数据模型或进行数据准备过程,在云端完成这些

内容概要:本文详细介绍了一个基于布谷鸟搜索算法(CS)注意力机制长短期记忆网络(ALSTM)融合的风电功率预测项目实例,旨在通过智能优化深度学习相结合的方法提升预测精度。项目涵盖了从数据预处理、特征工程、CS算法优化ALSTM超参数、注意力机制增强模型对关键时序特征的关注能力,到模型训练、预测及结果可视化的完整流程。文中还提供了MATLAB代码示例,包括数据填补、归一化、滑动窗口构建样本、CS算法实现、ALSTM建模训练、预测反归一化、误差评估及注意力权重可视化等关键环节,展示了CS-ALSTM模型在应对风电数据高波动性、非线性、噪声干扰和长序列依赖等问题上的有效性。; 适合人群:具备一定机器学习深度学习基础,熟悉MATLAB编程,从事新能源预测、智能电网、时间序列分析等相关领域的研究人员或工程师,尤其是工作1-3年希望提升模型优化实战能力的技术人员; 使用场景及目标:①应用于风电场功率预测,提升预测精度以优化电网调度能源消纳;②研究智能优化算法(如CS)深度学习模型(如ALSTM)的融合机制;③开展太阳能、负荷等其他时序预测任务的模型开发参数自动优化; 阅读建议:此资源以实际项目为导向,强调算法实现工程应用结合,建议读者在理解模型架构基础上,动手复现代码并调试参数,重点关注CS算法的全局寻优过程注意力机制的可视化分析,深入掌握模型优化逻辑预测性能提升路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值