22、机器学习与深度学习在乳腺癌诊断中的性能分析

机器学习与深度学习在乳腺癌诊断中的性能分析

1. 深度学习技术概述

深度学习是机器学习和人工智能的一个子类。传统机器学习算法在处理原始数据时存在局限性,而深度学习则能轻松解决许多传统人工智能难以处理的问题。常见的深度学习算法包括深度神经网络、卷积神经网络、堆叠自动编码器、深度玻尔兹曼机和生成对抗网络等。

1.1 自动编码器(Auto Encoder)

自动编码器是一种无监督学习技术,通过编码器和解码器进行训练。它由输入层、隐藏层和输出层组成。编码器使用激活函数将输入变量 x 转换为 z,解码器则用于恢复原始输入。训练过程使用无标签数据以无监督的方式进行。

1.2 稀疏自动编码器(Sparse Auto Encoders)

稀疏自动编码器也是一种无监督学习算法,用于有组织地表示细胞核或非细胞核补丁。通过增加隐藏层节点数量,在隐藏单元中引入稀疏性。同时,在成本函数中添加正则化项,该正则化项是神经元平均输出激活值函数。

1.3 堆叠稀疏自动编码器(Stacked Sparse Auto Encoder)

堆叠稀疏自动编码器是一个由多层稀疏自动编码器组成的神经网络,前一层的输出作为下一层的输入。通过组合多个堆叠稀疏自动编码器,可以增加特征数量。

1.4 卷积神经网络(Convolutional Neural Network)

卷积神经网络广泛应用于语音识别、计算机视觉、图像识别、目标检测和图像分割等领域。它由卷积层、池化层和全连接层组成,从输入中学习并逐步增加复杂层。

1.5 生成对抗网络(Generative Adversaria

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值