无交叉生成树与布尔可满足性问题的连通性研究
在计算机科学的图论和逻辑问题领域,无交叉生成树和布尔可满足性问题的连通性是两个重要的研究方向。下面我们将详细探讨这两个方面的相关内容。
无交叉生成树问题
在点的可见性图中寻找无交叉生成树是一个具有挑战性的问题。我们可以通过将问题划分为不同类型的子问题,并利用动态规划算法来解决。
子问题类型
- 类型 (1) 子问题 :由图 (G) 的一条边 (e) 和两条射线 (r_i \in R(e))、(r_j \in R(e)) 定义,其中 (\max{i, j} > 1),且 (i \in {1, |R(e)|}) 或 (j \in {1, |R(e)|})。我们需要判断在由这些射线和边所界定的区域 (R(e, r_i, r_j)) 内的顶点集合 (V’) 是否存在无交叉生成树 (T’ = (V’, E’)),且所有边 (e’ \in E’) 都完全包含在该区域内,并且不与边 (e) 交叉。
- 类型 (2) 子问题 :由图 (G) 的一条边 (e) 和两条射线 (r_i, r_j \in R(e)) 定义,其中 (i \leq j)。我们要判断在区域 (R(e, r_i, r_j)) 内的顶点集合 (V’) 是否存在无交叉生成树。
- 类型 (3) 子问题 :由图 (G) 的两条具有共同左端点的边 (e) 和 (f)((f) 的斜率小于 (e) 的斜率)以及一条不与 (e) 交叉的射线 (r_i \in R(f)) 定义。我们需要判断在区域 (R(e,
订阅专栏 解锁全文
14

被折叠的 条评论
为什么被折叠?



