MATLAB代码:基于遗传算法的风电混合储能容量优化配置
关键词:混合储能 容量配置优化 遗传算法
参考文档:《基于遗传算法的风电混合储能容量优化配置》无超级电容器 ;
仿真平台:MATLAB
主要内容:为了降低独立风力发电系统中储能装置的生命周期费用,建立以风力发电系统中储能装置的生命周期费用最小值为优化的目标函数、负荷缺电率等指标为约束条件的模型,结合蓄电池储能特性,利用风电和负荷24h的发用电数据,研究包含蓄电池的储能系统能量管理策略。
提出了一种基于改进粒子群算法的储能容量生命周期费用优化配置方法,算例分析证明该算法具有有效性和实用性,优化后的系统很大程度上节省了经济成本。
代码非常精品,结果合理正确,绝非烂大街的代码可以比的,算法也比较新,值得一看
基于遗传算法的风电混合储能容量优化配置
摘要:本文以风力发电系统中储能装置的生命周期费用最小值为优化目标,负荷缺电率等指标为约束条件,建立了混合储能容量优化配置模型。结合蓄电池储能特性,利用风电和负荷24h的发用电数据,提出了一种基于遗传算法的混合储能容量优化算法,并利用MATLAB仿真平台进行了算例分析,验证了该算法的有效性和实用性。
关键词:混合储能;容量配置优化;遗传算法
一、引言
近年来,随着风力发电技术的迅速发展,风力发电已成为全球最具发展潜力的可再生能源之一。但是,由于风力发电的不稳定性和不可控性,储能技术的应用成为了保障电力系统安全稳定运行的重要手段之一。因此,储能技术的储能容量配置优化成为了研究的热点之一。
本文以风力发电系统中储能装置的生命周期费用最小值为优化目标,负荷缺电率等指标为约束条件,建立了混合储能容量优化配置模型。结合蓄电池储能特性,利用风电和负荷24h的发用电数据,提出了一种基于遗传算法的混合储能容量优化算法,并利用MATLAB仿真平台进行了算例分析,验证了该算法的有效性和实用性。
二、混合储能容量优化配置模型
为了降低独立风力发电系统中储能装置的生命周期费用,本文建立了以风力发电系统中储能装置的生命周期费用最小值为优化目标函数、负荷缺电率等指标为约束条件的混合储能容量优化配置模型。该模型可以表达为如下数学模型:
minC=Cost_battery+Cost_UC+Cost_UD
s.t.Pgen_wind+Pgen_battery≥Pload (1)
0≤Pgen_wind≤Prated_wind (2)
0≤Pgen_battery≤Pmax_battery (3)
SOCmin_battery≤SOC_battery≤SOCmax_battery (4)
其中,C为生命周期费用;Cost_battery为蓄电池的生命周期费用;Cost_UC和Cost_UD分别为未利用风能的电量和负荷缺电率的生命周期费用;Pgen_wind和Pgen_battery分别为风电和储能系统在每个时刻的发电量;Pload为负荷需求;Prated_wind为风力发电机额定功率;Pmax_battery为蓄电池最大充放电功率;SOCmin_battery和SOCmax_battery分别为蓄电池的最小和最大充电状态。
三、混合储能容量优化配置算法
本文提出了一种基于遗传算法的混合储能容量优化算法。遗传算法是一种模拟自然进化的计算方法,具有全局寻优能力、并行搜索能力和适应性强等特点。该算法的基本流程如下:
-
初始化种群:根据实际情况设置种群数目和基因编码方式,以及各个基因的初始值;
-
确定交叉概率和变异概率:交叉概率和变异概率是影响遗传算法性能的重要参数,需要通过试验或经验确定;
-
选择操作:根据适应度函数对种群进行选择,高适应度的个体被选择的概率较大;
-
交叉操作:随机选取两个个体进行基因交换,生成新的后代个体;
-
变异操作:随机选择某个个体的某个基因进行随机修正;
-
计算适应度:根据适应度函数计算各个个体的适应度值;
-
判断退出条件:当达到预定的迭代次数或适应度值满足预先设定的条件时,算法终止;
-
生成最优解:根据适应度值最高的个体生成优化结果,并进行后续的模型验证和分析。
四、MATLAB仿真实验
本文采用MATLAB仿真平台进行算例分析。实验数据来源于现实风电和负荷发用电数据。本文针对典型风速范围内的风力发电机进行仿真计算,得到了不同储能容量组合下各项生命周期费用指标的具体数值。结果表明,本文所提出的基于遗传算法的混合储能容量优化算法具有实用价值,可在实际工程中推广应用。
五、结论
本文针对独立风力发电系统中混合储能容量优化配置问题,建立了混合储能容量优化配置模型,并提出了基于遗传算法的混合储能容量优化算法。通过MATLAB仿真实验验证了该算法的有效性和实用性。该算法具有一定优越性,可以为实际工程提供参考。
相关代码,程序地址:http://lanzouw.top/672769758955.html