考研数学——高数:函数与极限(3)

本文深入探讨了考研数学中高等数学部分的函数连续性与间断点概念,包括左连续、右连续、第一类间断点(可去、跳跃间断点)和第二类间断点的定义。同时阐述了连续函数的运算性质、初等函数的连续性和闭区间上连续函数的有界性、最大最小值定理及其应用。通过例题展示了如何证明特定函数存在满足条件的根。
摘要由CSDN通过智能技术生成

函数的连续性与间断点

函数的连续性

左连续 

右连续 

区间上的连续性

在xo处连续

函数的间断点

第一类间断点(左右极限都存在)

可去间断点: f(xo-0)= f(xo+0)

跳跃间断点: f(xo-0)≠ f(xo+0)

第二类间断点(震荡间断点、无穷间断点)

连续函数的运算

定理1

定理2

定理3

初等函数的连续性

定理4

定理5

试证明如下结论

闭区间上连续函数的性质

有界性与最大最小值定理

推广:有界性定理

零点定理与介值定理

例题:证明x = asinx+b,a>0,b>0,有一个不超过a+b的正根

函数的连续性与间断点


函数的连续性

定义: 若 \lim_{\bigtriangleup x\rightarrow 0}\bigtriangleup y=0,则函数连续;或者 \lim_{x\rightarrow xo}f(x) = f(xo) ,则函数连续

左连续 \lim_{x\rightarrow x_{o}^{-}}f(x) = f(xo)

右连续 \lim_{x\rightarrow x_{o}^{+}}f(x) = f(xo)

函数在该点连续 等价于  在该点左连续且右连续


区间上的连续性

如果 f(x) 在(a,b)上连续,只需要满足f(x)在区间内部都是连续的(不需要考虑x=a或x=b处的连续性)

如果 f(x) 在[a,b]上连续,除了保证区间内都是连续的,还要保证在x=a处右连续,在x=b处左连续


在xo处连续

需要满足的条件:

1.f(x) 在 xo有定义

2. \lim_{x\rightarrow xo}f(x)存在

3. \lim_{x\rightarrow xo}f(x) = f(xo)

函数的间断点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值