tf.nn.top_k() 和 tf.nn.in_top_k() 函数的用法

tf.nn.top_k(input, k, name=None)

这个函数表示要返回input中每行元素最大的值,并返回它们的索引下标。

  • input:要输入的数
  • k:返回的最大值的个数

下面的例子中,input是一个2行3列的随机矩阵,每行元素的索引下标从0开始,分别是0,1,2,
当K=2时,表示要返回2个最大值,第一行的最大值为0.37547749,第二大为0.29199509,所以
第一行返回[0.37547749, 0.29199509],它们的下标分别是1和0,返回下标数组[1, 0]。
第二行的最大值为0.65036725,下标为2,第二大为0.47195655,下标为1,所以第二行返回
[0.65036725, 0.47195655],下标返回[2, 1]

input=tf.constant(np.random.rand(2,3))
output=tf.nn.top_k(input,2)
with tf.Session() as sess:
    print(sess
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值