TensorFlow函数:tf.nn.in_top_k()

TensorFlow的tf.nn.in_top_k()函数用于检查预测值中是否存在目标值。它比较预测矩阵(每个样本对每个类别的概率)与实际目标类别,并返回布尔值,指示预测的前k个最高概率类别是否包含目标值。当k=1时,检查是否预测正确,当k>1时,检查目标类别是否在前k个预测类别中。函数的输出是一个布尔数组,表示每个样本的预测是否匹配其真实标签。
摘要由CSDN通过智能技术生成

in_top_k(predictions, targets, k, name=None)

函数的输入:
predictions:预测的输出结果,预测矩阵的大小为样本数×类别的个数的二维矩阵。换句话说,矩阵的值就是每个样本属于各个类别的概率值。
targets:真实标注的类别值,大小为样本个数,即每个样本对应一个唯一的类别。
k:当k=1时,即就是某一样本预测属于某一最大概率的,与该样本真实标注的targets**类**进行对比,是否一致,一致则输出true,反之输出false。当k不等于1时,每个样本的预测结果的前k个最大概率的类里面是否包含targets预测中的标签,也就是多对一。

函数的输出:
bool型变量。即predictions预测标签和targets实际标签进行对比,是否一致,一致则输出true,反之输出false。

假设有10个样本,标注为5类,10个样本实际标签均是第一类,代码如下:

import tensorflow as tf

logits = tf.Variable(tf.truncated_normal(shape=[10,5],stddev=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值