tf.nn.top_k函数

返回最内层一维(也就是最后一维)的前k个最大的元素,以及它所对应的索引。返回的值除了最后一维维度为k之外,其它维度维持原样。

#coding:utf-8
import tensorflow as tf
import numpy as np
data = np.array([[[1, 4, 1], [5, 2, 8]],
                 [[3, 2, 3], [9, 4, 4]],
                 [[1, 5, 5], [6, 7, 6]]])
data=tf.constant(data)
top_k=tf.nn.top_k(data,2)
print top_k.values
with tf.Session() as sess:
  print sess.run(top_k)
  print sess.run(top_k.values)
  print sess.run(top_k.indices[0,0,0])

结果:

Tensor("TopKV2:0", shape=(3, 2, 2), dtype=int64)

TopKV2(values=array([[[4, 1],
        [8, 5]],

       [[3, 3],
        [9, 4]],

       [[5, 5],
        [7, 6]]]), indices=array([[[1, 0],
        [2, 0]],

       [[0, 2],
        [0, 1]],

       [[1, 2],
        [1, 0]]], dtype=int32))

  [[[4 1]
  [8 5]]

 [[3 3]
  [9 4]]

 [[5 5]
  [7 6]]]

1
要加入动态卷积,需要使用TensorFlow函数式API来构建模型,并且使用tf.keras.layers.Layer创建自定义层。 下面是一个示例代码,它将动态卷积层添加到DenseNet121的顶部: ```python import tensorflow as tf from tensorflow.keras.applications import DenseNet121 from tensorflow.keras.layers import Layer, Input, GlobalMaxPooling2D, Dense from tensorflow.keras.models import Model from tensorflow.keras.regularizers import l2 class DynamicConv2D(Layer): def __init__(self, filters, kernel_size, **kwargs): super(DynamicConv2D, self).__init__(**kwargs) self.filters = filters self.kernel_size = kernel_size def build(self, input_shape): self.kernel = self.add_weight(name='kernel', shape=(self.kernel_size, self.kernel_size, input_shape[-1], self.filters), initializer='glorot_uniform', trainable=True) def call(self, inputs): padding = (self.kernel_size - 1) // 2 padded_inputs = tf.pad(inputs, [[0, 0], [padding, padding], [padding, padding], [0, 0]], mode='CONSTANT') conv_outputs = [] for i in range(-padding, padding+1): for j in range(-padding, padding+1): shift_inputs = tf.roll(padded_inputs, shift=[i, j], axis=[1, 2]) conv_outputs.append(tf.nn.conv2d(shift_inputs, self.kernel, strides=1, padding='VALID')) output = tf.reduce_max(tf.stack(conv_outputs), axis=0) return output input_shape = (224, 224, 3) inputs = Input(shape=input_shape) base_model = DenseNet121(weights='imagenet', include_top=False, input_shape=input_shape)(inputs) x = GlobalMaxPooling2D()(base_model) x = Dense(512, activation='relu', kernel_regularizer=l2(0.0001))(x) x = Dense(128, activation='relu', kernel_regularizer=l2(0.0001))(x) x = DynamicConv2D(filters=64, kernel_size=3)(x) # 添加动态卷积层 predictions = Dense(4, activation='softmax')(x) model = Model(inputs=inputs, outputs=predictions) model.summary() ``` 在上面的代码中,DynamicConv2D类定义了一个动态卷积层。在build()方法中,它创建一个可训练的卷积核。在call()方法中,它使用TensorFlowtf.pad()函数将输入数据进行零填充,并使用tf.nn.conv2d()函数对每个方向的偏移量执行卷积操作。然后,它使用tf.reduce_max()函数将所有偏移量的卷积结果取最大值。 要在模型中使用DynamicConv2D层,只需要将其添加到模型中即可,如上面的代码所示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值