pandas中强大的绘制图表功能——DataFrame.hist(),以及统计分析函数——DataFrame.describe()

pandas中具有很多很强大的图表绘制功能,今天介绍一个简单好用的绘制数据框DataFrame中某一列数据分布直方图的函数——DataFrame.hist(),顺便介绍一个统计分析函数DataFrame.describe()。

下面通过代码进行展示效果,示例代码中的csv文件是谷歌提供的一个包含加利福尼亚州住房数据的文件。

import pandas as pd

california_housing_dataframe = pd.read_csv("https://storage.googleapis.com/mledu-datasets/california_housing_train.csv", sep=",")
print(california_housing_dataframe)
california_housing_dataframe.describe()

以上代码首先通过pandas提供的read_csv()函数读取了csv文件,将其保存为数据框DataFrame类型的数据。然后使用了DataFrame.describe()函数展示了一些有用的统计信息,这个函数在分析一个较大的csv文件时,作为初步的分析工具非常有用。统计结果包括了数据量、均值、方差、最大值、最小值等。以上代码的输出如下:

       longitude  latitude  housing_median_age  total_rooms  total_bedrooms  \
0        -114.31     34.19                15.0       5612.0          1283.0   
1        -114.47     34.40                19.0       7650.0          1901.0   
2        -114.56     33.69                17.0        720.0           174.0   
3        -114.57     33.64                14.0       1501.0           337.0   
4        -114.57     33.57                20.0       1454.0           326.0   
5        -114.58     33.63                29.0       1387.0           236.0   
6        -114.58     33.61                25.0       2907.0           680.0   
7        -114.59     34.83                41.0        812.0           168.0   
8        -114.59     33.61                34.0       4789.0          1175.0   
9        -114.60     34.83                46.0       1497.0           309.0   
10       -114.60     33.62                16.0       3741.0           801.0   
11       -114.60     33.60                21.0       1988.0           483.0   
12       -114.61     34.84                48.0       1291.0           248.0   
13       -114.61     34.83                31.0       2478.0           464.0   
14       -114.63     32.76                15.0       1448.0           378.0   
15       -114.65     34.89                17.0       2556.0           587.0   
16       -114.65     33.60                28.0       1678.0           322.0   
17       -114.65     32.79                21.0         44.0            33.0   
18       -114.66     32.74                17.0       1388.0           386.0   
19       -114.67     33.92                17.0         97.0            24.0   
20       -114.68     33.49                20.0       1491.0           360.0   
21       -114.73     33.43                24.0        796.0           243.0   
22       -114.94     34.55                20.0        350.0            95.0   
23       -114.98     33.82                15.0        644.0           129.0   
24       -115.22     33.54                18.0       1706.0           397.0   
25       -115.32     32.82                34.0        591.0           139.0   
26       -115.37     32.82                30.0       1602.0           322.0   
27       -115.37     32.82                14.0       1276.0           270.0   
28       -115.37     32.81                32.0        741.0           191.0   
29       -115.37     32.81                23.0       1458.0           294.0   
...          ...       ...                 ...          ...             ...   
16970    -124.17     40.80                52.0       1606.0           419.0   
16971    -124.17     40.80                52.0       1557.0           344.0   
16972    -124.17     40.79                43.0       2285.0           479.0   
16973    -124.17     40.78                39.0       1606.0           330.0   
16974    -124.17     40.77                30.0       1895.0           366.0   
16975    -124.17     40.76                26.0       1776.0           361.0   
16976    -124.17     40.75                13.0       2171.0           339.0   
16977    -124.17     40.62                32.0       1595.0           309.0   
16978    -124.18     40.79                39.0       1836.0           352.0   
16979    -124.18     40.78                37.0       1453.0           293.0   
16980    -124.18     40.78                34.0       1592.0           364.0   
16981    -124.18     40.78                33.0       1076.0           222.0   
16982    -124.18     40.62                35.0        952.0           178.0   
16983    -124.19     41.78                15.0       3140.0           714.0   
16984    -124.19     40.78                37.0       1371.0           319.0   
16985    -124.19     40.77                30.0       2975.0           634.0   
16986    -124.19     40.73                21.0       5694.0          1056.0   
16987    -124.21     41.77                17.0       3461.0           722.0   
16988    -124.21     41.75                20.0       3810.0           787.0   
16989    -124.21     40.75                32.0       1218.0           331.0   
16990    -124.22     41.73                28.0       3003.0           699.0   
16991    -124.23     41.75                11.0       3159.0           616.0   
16992    -124.23     40.81                52.0       1112.0           209.0   
16993    -124.23     40.54                52.0       2694.0           453.0   
16994    -124.25     40.28                32.0       1430.0           419.0   
16995    -124.26     40.58                52.0       2217.0           394.0   
16996    -124.27     40.69                36.0       2349.0           528.0   
16997    -124.30     41.84                17.0       2677.0           531.0   
16998    -124.30     41.80                19.0       2672.0           552.0   
16999    -124.35     40.54                52.0       1820.0           300.0   

       population  households  median_income  median_house_value  
0          1015.0       472.0         1.4936             66900.0  
1          1129.0       463.0         1.8200             80100.0  
2           333.0       117.0         1.6509             85700.0  
3           515.0       226.0         3.1917             73400.0  
4           624.0       262.0         1.9250             65500.0  
5           671.0       239.0         3.3438             74000.0  
6          1841.0       633.0         2.6768             82400.0  
7           375.0       158.0         1.7083             48500.0  
8          3134.0      1056.0         2.1782             58400.0  
9           787.0       271.0         2.1908             48100.0  
10         2434.0       824.0         2.6797             86500.0  
11         1182.0       437.0         1.6250             62000.0  
12          580.0       211.0         2.1571             48600.0  
13         1346.0       479.0         3.2120             70400.0  
14          949.0       300.0         0.8585             45000.0  
15         1005.0       401.0         1.6991             69100.0  
16          666.0       256.0         2.9653             94900.0  
17           64.0        27.0         0.8571             25000.0  
18          775.0       320.0         1.2049             44000.0  
19           29.0        15.0         1.2656             27500.0  
20         1135.0       303.0         1.6395             44400.0  
21          227.0       139.0         0.8964             59200.0  
22          119.0        58.0         1.6250             50000.0  
23          137.0        52.0         3.2097             71300.0  
24         3424.0       283.0         1.6250             53500.0  
25          327.0        89.0         3.6528            100000.0  
26         1130.0       335.0         3.5735             71100.0  
27          867.0       261.0         1.9375             80900.0  
28          623.0       169.0         1.7604             68600.0  
29          866.0       275.0         2.3594             74300.0  
...           ...         ...            ...                 ...  
16970       891.0       367.0         1.5850             75500.0  
16971       758.0       319.0         1.8529             62500.0  
16972      1169.0       482.0         1.9688             70500.0  
16973       731.0       327.0         1.6369             68300.0  
16974       990.0       359.0         2.2227             81300.0  
16975       992.0       380.0         2.8056             82800.0  
16976       951.0       353.0         4.8516            116100.0  
16977       706.0       277.0         2.8958             86400.0  
16978       883.0       337.0         1.7450             70500.0  
16979       867.0       310.0         2.5536             70200.0  
16980       950.0       317.0         2.1607             67000.0  
16981       656.0       236.0         2.5096             72200.0  
16982       480.0       179.0         3.0536            107000.0  
16983      1645.0       640.0         1.6654             74600.0  
16984       640.0       260.0         1.8242             70000.0  
16985      1367.0       583.0         2.4420             69000.0  
16986      2907.0       972.0         3.5363             90100.0  
16987      1947.0       647.0         2.5795             68400.0  
16988      1993.0       721.0         2.0074             66900.0  
16989       620.0       268.0         1.6528             58100.0  
16990      1530.0       653.0         1.7038             78300.0  
16991      1343.0       479.0         2.4805             73200.0  
16992       544.0       172.0         3.3462             50800.0  
16993      1152.0       435.0         3.0806            106700.0  
16994       434.0       187.0         1.9417             76100.0  
16995       907.0       369.0         2.3571            111400.0  
16996      1194.0       465.0         2.5179             79000.0  
16997      1244.0       456.0         3.0313            103600.0  
16998      1298.0       478.0         1.9797             85800.0  
16999       806.0       270.0         3.0147             94600.0  

[17000 rows x 9 columns]
longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000
mean	-119.562108	35.625225	28.589353	2643.664412	539.410824	1429.573941	501.221941	3.883578	207300.912353
std	2.005166	2.137340	12.586937	2179.947071	421.499452	1147.852959	384.520841	1.908157	115983.764387
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000
25%	-121.790000	33.930000	18.000000	1462.000000	297.000000	790.000000	282.000000	2.566375	119400.000000
50%	-118.490000	34.250000	29.000000	2127.000000	434.000000	1167.000000	409.000000	3.544600	180400.000000
75%	-118.000000	37.720000	37.000000	3151.250000	648.250000	1721.000000	605.250000	4.767000	265000.000000
max	-114.310000	41.950000	52.000000	37937.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000

下面就可以介绍今天的重点内容了:DataFrame.hist()。通过下面一行代码,就能简单迅速的画出某一列中的值的分布直方图:

california_housing_dataframe.hist('housing_median_age')

  • 3
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaishi_hero

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值