hiho 18 19 使用线段树进行区间查找和更新

问题描述

线段树的单点更新。

解决方法

首先从树根部开始,更新左右子树,然后更新自身节点。复杂度为O(logN)
对于大数据输入,最好用scanf,cin会超时。

#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
using namespace std;
enum {maxn = 1<<20, MAX= 1<<30}; // 注意二叉树的节点个数最好是2的幂次。
int w[maxn];
int st[2*maxn];
void build(int rt, int L, int R)
{
    if (L == R)
    {
        st[rt] = w[L];
        return ;
    }
    int mid = L + (R-L)/ 2;
    build(rt<<1, L, mid);
    build((rt<<1)+1, mid+1, R);
    st[rt] = min(st[rt<<1], st[(rt<<1)+1]);
}
int query(int rt, int L, int R, int ql, int qr)
{
    if (ql <= L && R <= qr)
        return st[rt];
    if (qr <L || R < ql)
        return MAX;
    int mid = L + (R-L)/2;
    return min(query(rt<<1, L, mid, ql, qr), query((rt<<1)+1, mid+1, R, ql, qr));

}
void update(int rt, int L, int R, int pos, int we)
{
     if (L== R && L == pos)
    {
        st[rt] = we;
        return;
    }
    if (L<= pos && pos <=R)
    {
        int mid = L + (R-L)/2;
        update(rt<<1, L, mid, pos, we);
        update((rt<<1)+1, mid+1, R, pos, we);
        st[rt] = min(st[rt<<1], st[(rt<<1)+1]); // 注意只有下层更新完成后,才能更新本层。
    }


}
int main()
{
    int N;
    scanf("%d", &N);
    for (int i=1; i<= N; i++)
    {
        scanf("%d", &w[i]);
    }
    build(1, 1, N);
    int Q;
    scanf("%d", &Q);
    for (int i=0; i< Q; i++)
    {
        int t, a, b;
        scanf("%d %d %d", &t, &a, &b);
        if (t==0){
            printf("%d\n", query(1, 1, N, a, b));
        }else{
            update(1,  1, N, a, b);
        }

    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值