问题描述
线段树的单点更新。
解决方法
首先从树根部开始,更新左右子树,然后更新自身节点。复杂度为O(logN)
对于大数据输入,最好用scanf,cin会超时。
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
using namespace std;
enum {maxn = 1<<20, MAX= 1<<30}; // 注意二叉树的节点个数最好是2的幂次。
int w[maxn];
int st[2*maxn];
void build(int rt, int L, int R)
{
if (L == R)
{
st[rt] = w[L];
return ;
}
int mid = L + (R-L)/ 2;
build(rt<<1, L, mid);
build((rt<<1)+1, mid+1, R);
st[rt] = min(st[rt<<1], st[(rt<<1)+1]);
}
int query(int rt, int L, int R, int ql, int qr)
{
if (ql <= L && R <= qr)
return st[rt];
if (qr <L || R < ql)
return MAX;
int mid = L + (R-L)/2;
return min(query(rt<<1, L, mid, ql, qr), query((rt<<1)+1, mid+1, R, ql, qr));
}
void update(int rt, int L, int R, int pos, int we)
{
if (L== R && L == pos)
{
st[rt] = we;
return;
}
if (L<= pos && pos <=R)
{
int mid = L + (R-L)/2;
update(rt<<1, L, mid, pos, we);
update((rt<<1)+1, mid+1, R, pos, we);
st[rt] = min(st[rt<<1], st[(rt<<1)+1]); // 注意只有下层更新完成后,才能更新本层。
}
}
int main()
{
int N;
scanf("%d", &N);
for (int i=1; i<= N; i++)
{
scanf("%d", &w[i]);
}
build(1, 1, N);
int Q;
scanf("%d", &Q);
for (int i=0; i< Q; i++)
{
int t, a, b;
scanf("%d %d %d", &t, &a, &b);
if (t==0){
printf("%d\n", query(1, 1, N, a, b));
}else{
update(1, 1, N, a, b);
}
}
return 0;
}