hiho 34 二分图二•二分图最大匹配之匈牙利算法

问题

二分图的最大匹配算法

解法

寻找一条交错路径,路径中的边进行翻转。
优化:1, 只要计算一个集合中的顶点。
2, 在每个顶点处,记录已经查找过的另一集合的顶点,防止重复。

#include <bits/stdc++.h>
using namespace std;
enum{maxn = 1000+5};
vector<int> G[maxn];
int color [maxn];
int res[maxn];
int visited[maxn];
//  传入集合A中的顶点。
bool findPath(int u)
{
    for(int i=0; i<G[u].size(); ++i)
    {
        int v = G[u][i];
        if (visited[v])//去除重复
            continue;
        visited[v] = 1;//记录已经查找过
        if (res[v]==0 || findPath(res[v]))
        {
            res[u]= v, res[v]= u;
            return true;
        }
    }
    return false;
}
int main()
{
    int n, m;
    scanf("%d %d", &n, &m);
    while(m--)
    {
        int a, b;
        scanf("%d %d", &a, &b);
        G[a].push_back(b);
        G[b].push_back(a);
    }
    int colorNum = 0;
    queue<int> q;
    memset(color, -1, sizeof(color));
    while(colorNum<n){
        if (q.empty())
        {
            for (int i=1; i<=n; ++i)
            {
                if (color[i] == -1)
                {
                    color[i]= 0;
                    colorNum++;
                    q.push(i);
                    break;
                }
            }
        }
        int now = q.front(); q.pop();
        for (int i=0; i<G[now].size(); ++i)
        {
            if (color[G[now][i]]==-1)
            {
                color[G[now][i]] = !color[now];
                colorNum++;
                q.push(G[now][i]);
            }else{
                if(color[G[now][i]] == color[now])
                    return -1;
            }
        }
    }
    memset(res, 0, sizeof(res));
    int ret = 0;
    for(int i=1; i<=n; ++i)
    {
        if (color[i]==0)
        {
            memset(visited, 0, sizeof(visited));
            if (findPath(i))
                ++ret;
        }
    }
    printf("%d\n", ret);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值